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1. Architecture of Multi-resolution KPCN

The original kernel prediction denoiser (KPCN [BVM∗17] is designed for offline denoising, which takes several seconds to denoise a 720p
frame. Instead of comparing with KPCN, we have included a multi-resolution variant of KPCN in our comparisons and we refer to it as
MR-KP. Its architecture is presented in Figure 1, where the core component is a convolutional neural network which computes kernels for
three levels. The noisy input radiance is filtered at three different resolutions and the filtered results are gradually combined to obtain the final
result. Similar to the composition module of [VRM∗18], we blend images of two adjacent levels with

bk = Sup(dk−1) ·wk +dk −Sup
(
Sdown(dk)

) ·wk. (1)

Here, Sdown is a downsampling function (2×2 average pooling), Sup is a nearest-neighbor upsampling function, and dk is the denoised image
from level k. Note that d4 is a downsampled copy of the original noisy input radiance. wk is a scalar weight map for level k, which is produced
along with kernels.

The validation PSNR and validation loss of ours (2-layer 3-grid) and MR-KP (5-layer and 1-layer) for scene Sponza in the BMFR dataset
is shown in Figure 3 and Figure 2. Although MR-KP 5-layer shows lower error in the validation stage, it overfits the training dataset easily.
In the test stage, ours shows better generalization performance with PSNR (OURS) = 32.787 while PSNR (MR-KP 5-layer) = 29.476 and
PSNR (MR-KP 1-layer) = 29.912.
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Figure 1: Architecture of the MR-KP. (a) The kernel prediction network is designed as a convolutional neural network. With the predicted
kernels, the noisy input are downsampled and filtered at three levels. (b) Denoised results of two adjacent levels are gradually blended to get
the final output

Figure 2: The validation loss of ours (2-layer 3-grid), MR-KP (1-layer) and MR-KP (5-layer) for scene Sponza in the BMFR dataset.

2. Additional Comparisons on the Tungsten Dataset

On our Tungsten dataset, we apply our denoiser to denoise 64-spp noisy frames. In Figure 4, we show comparisons results on the Classroom,
Country Kitchen, and White Room scenes. Additionally, we present average errors over 100 frames in Table 1. Again, we report two versions
of error measurements of our denoiser: with outlier removal and without outlier removal. Note that outlier removal will slightly increase the
numerical errors.

Figure 3: The validation PSNR of ours (2-layer 3-grid), MR-KP (1-layer), and MR-KP (5-layer) for scene Sponza in the BMFR dataset.
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Figure 4: Visual quality comparisons between our method and compared methods on the Classroom, Kitchen and White Room scenes. We
show a single frame from animated sequences of our Tungsten dataset rendered at 64 spp and not using temporal accumulation. For each
scene, closeups of orange frames are shown on the top row and closeups of blue frames are on the bottom row. The reference images are
rendered with 4096 spp. We use the 7-layer 3-grid architecture.

Table 1: Numerical errors for our trained denoisers on the Classroom, Country Kitchen and White Room scenes of the Tungsten dataset.
Our denoiser uses the 7-layer 3-grid architecture. Input data are rendered at 64 spp and pre-stage temporal accumulation is not applied.
’Ours’ denotes our denoiser with outlier removal preprocessing, whereas ’Ours wo’ is without outlier removal.

Scene
PSNR SSIM

NFOR BMFR ONND MR-KP Ours wo Ours NFOR BMFR ONND MR-KP Ours wo Ours

Classroom 31.6664 24.7305 32.8743 32.5346 32.1186 31.4955 0.9400 0.8523 0.9490 0.9450 0.9415 0.9423
Kitchen 34.6762 24.4801 34.7969 35.7341 35.5309 34.8202 0.9728 0.9078 0.9731 0.9740 0.9741 0.9734

White room 37.6258 26.3966 36.5971 37.5122 38.0810 37.1518 0.9774 0.9453 0.9733 0.9769 0.9773 0.9766

3. Additional Evaluation Methods

Besides PSNR and SSIM, we calculate the average relative mean square error (relative-MSE), root mean square error (root-MSE), and
symmetric mean absolute percentage error (SMAPE) for denoised images. The results of the 1-spp dataset are presented in Table 3, Table 4,
and Table 2, respectively. The results of the 64 spp dataset are presented in Table 7, Table 8, and Table 6, respectively. To facilitate easy
assessment, we have included the full SSIM images (brighter is better) and the relative-MSE images (darker is better) in the supplemental
data package. We recommend readers to view these error maps in the interactive viewer for pixel-wise error comparisons.

To evaluate temporal stability of the different denoising approaches quantitatively, we adopt standard metric Video Multi-Method Assess-
ment Fusion (VMAF) [ALM∗15]. Table 5 presents the average VMAF over 60 frames on five scenes of the BMFR dataset. It can be observed
from Table 5 that our method generally provides high VMAF scores. SVGF performs well in VMAF scores because the predicted frames are
temporally smooth. However, SVGF doesn’t preserve the correct highlights and glossy reflection, leading to low SSIM and PSNR. Table 9
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Table 2: A comparison of average SMAPE values (lower is better) for evaluating our trained denoisers on 1-spp BMFR test data.

Scene
SMAPE

NFOR BMFR ONND SVGF MR-KP(5-layer) MR-KP(1-layer) Ours(3-grid) Ours(1-grid)

Classroom 5.944 5.306 10.953 8.252 4.058 5.484 4.351 4.482
Living room 4.448 3.792 8.834 4.535 3.134 4.212 2.768 4.404
San Miguel 24.969 24.438 30.005 27.401 25.278 30.995 21.576 20.936

Sponza 7.874 6.518 14.830 10.927 6.685 6.170 3.944 4.172
Sponza (glossy) 16.573 15.479 20.619 16.002 11.606 11.991 9.168 9.841

Sponza (mov. light) 21.245 30.793 18.367 29.276 12.830 18.619 12.302 12.225

Table 3: A comparison of average relative-MSE values (lower is better) for evaluating our trained denoisers on 1-spp BMFR test data.

Scene
relative-MSE

NFOR BMFR ONND SVGF MR-KP(5-layer) MR-KP(1-layer) Ours(3-grid) Ours(1-grid)

Classroom 2.621 0.406 1.857 0.366 0.188 0.174 0.175 0.168

Living room 13.168 13.096 8.759 33.197 7.519 18.654 3.159 24.496
San Miguel 202.431 250.519 195.152 93.898 117.102 63.554 72.004 110.855

Sponza 1.443 1.188 1.581 0.933 1.142 1.426 1.013 0.716
Sponza (glossy) 24.909 41.307 45.183 8.521 29.907 28.771 21.044 77.427

Sponza (mov. light) 10.448 10.193 9.015 4.512 6.064 5.564 6.229 7.266

presents the average VMAF over 100 frames on five scenes of our Tungsten dataset. In the Tungsten dataset our VMAF results are still
generally comparable to the other real-time methods.

4. Additional Ablation Studies

4.1. Architecture comparisons

The core of our neural bilateral grid denoiser is a scalable GuideNet. We evaluate three choices of architecture design. The first is a simplified
design which has the same shallow convolutional neural network as ours but uses only one bilateral grid, and we refer to it as Arch-1. The
second (Arch-2) builds a 3-scale pyramid of bilateral grids but uses a deeper neural network. Besides, we tested a 7-layer architecture (Arch-
3) similar to DenseNet [HLVDMW17]. The comparison of visual quality of the three architectures on the Classroom scene is displayed in
Figure 6. This shows how our approach scales to higher quality by using more complex networks. Input data are 64 spp noisy images and
the quantitative errors are also given below denoised results. In addition, the per frame PSNR values are plotted in Figure 5, where Arch-3
provides the highest PSNR on all frame.

4.2. Auxiliary features

Our rendering system provides auxiliary features including depth, albedo and shading normals as by-products, which are readily used for our
denoiser. Previous research work [BVM∗17,CKS∗17] verified that auxiliary features are critical assistance to improve the quality of denoised
images. We further investigate the effect of noisy radiance data on the neural bilateral grid denoiser by training it with and without noisy
radiance data. As presented in the closeup images of Figure 7, training including noisy radiance as input to the network effectively preserves

Table 4: A comparison of average root-MSE values (lower is better) for evaluating our trained denoisers on 1-spp BMFR test data.

Scene
root-MSE

NFOR BMFR ONND SVGF MR-KP(5-layer) MR-KP(1-layer) Ours(3-grid) Ours(1-grid)

Classroom 0.032 0.036 0.043 0.056 0.025 0.027 0.027 0.027
Living room 0.027 0.032 0.053 0.043 0.025 0.031 0.024 0.038
San Miguel 0.081 0.090 0.098 0.116 0.072 0.076 0.066 0.064

Sponza 0.031 0.028 0.059 0.066 0.035 0.033 0.022 0.023
Sponza (glossy) 0.050 0.056 0.067 0.090 0.048 0.044 0.033 0.034

Sponza (mov. light) 0.081 0.145 0.077 0.142 0.057 0.068 0.059 0.058
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Table 5: A comparison of average VMAF values (higher is better) for evaluating our trained denoisers on 1-spp BMFR test data.

Scene
VMAF

NFOR BMFR ONND SVGF MR-KP(5-layer) MR-KP(1-layer) Ours(3-grid) Ours(1-grid)

Classroom 79.931 85.478 70.179 96.130 88.010 82.192 86.405 87.087
Living room 81.400 81.899 70.888 80.046 78.022 71.756 84.070 84.706

San Miguel 45.148 43.667 49.878 49.994 56.944 54.098 59.539 59.023
Sponza 84.427 94.009 61.838 91.614 85.090 78.51 88.404 89.888

Sponza (glossy) 61.529 69.867 73.418 94.797 67.746 64.967 73.851 75.899
Sponza (mov. light) 47.522 55.325 56.674 66.634 69.142 57.532 66.983 68.032

Table 6: A comparison of average SMAPE values (lower is better) for evaluating our trained denoisers on 64 spp Tungsten test data. ’Ours’
denotes our denoiser with outlier removal preprocessing, whereas ’Ours wo’ is without outlier.

Scene
SMAPE

NFOR BMFR ONND MR-KP Ours wo Ours

Bedroom 3.703 8.429 4.595 3.707 3.622 3.878
Classroom 6.484 11.344 7.449 6.350 6.415 6.973

Dining room 6.868 15.325 13.795 7.964 7.341 8.774
Kitchen 4.981 11.078 6.472 4.849 5.269 5.853

White Room 2.860 6.946 3.675 2.919 2.848 3.262

Table 7: A comparison of average relative-MSE values (lower is better) for evaluating our trained denoisers on 64 spp Tungsten test data.
’Ours’ denotes our denoiser with outlier removal preprocessing, whereas ’Ours wo’ is without outlier.

Scene
relative-MSE

NFOR BMFR ONND MR-KP Ours wo Ours

Bedroom 13.927 940.755 28.056 14.899 12.286 10.595

Classroom 18.194 512.290 34.399 35.166 8.683 5.736

Dining room 24.679 1703.995 122.461 534.431 26.440 32.878
Kitchen 32.837 2565.441 25.115 16.593 11.766 9.389

White Room 13.104 446.367 6.767 2.881 3.110 2.174

Table 8: A comparison of average root-MSE values (lower is better) for evaluating our trained denoisers on 64 spp Tungsten test data.
’Ours’ denotes our denoiser with outlier removal preprocessing, whereas ’Ours wo’ is without outlier.

Scene
root-MSE

NFOR BMFR ONND MR-KP Ours wo Ours

Bedroom 0.0179 0.0530 0.0190 0.0164 0.0159 0.0168
Classroom 0.0261 0.0583 0.0227 0.0236 0.0248 0.0266

Dining room 0.0155 0.0510 0.0128 0.0154 0.0137 0.0142
Kitchen 0.0185 0.0612 0.0183 0.0164 0.0168 0.0182

White Room 0.0132 0.0514 0.0149 0.0133 0.0125 0.0139

Table 9: A comparison of average VMAF values (higher is better) for evaluating our trained denoisers on 64 spp Tungsten test data. ’Ours’
denotes our denoiser with outlier removal preprocessing, whereas ’Ours wo’ is without outlier.

Scene
VMAF

NFOR BMFR ONND MR-KP Ours wo Ours

Bedroom 96.301 86.413 96.344 96.765 96.045 94.644
Classroom 93.079 57.656 99.834 97.751 96.022 96.530

Dining room 98.063 68.861 99.875 99.639 98.755 98.801
Kitchen 95.744 66.687 98.215 98.486 96.056 96.735

White Room 97.906 82.036 98.653 98.565 97.659 97.131
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Figure 5: Per-frame PSNR comparisons for three architectures Arch-1, Arch-2 and Arch-3 on the Classroom scene. This scene has an
animated sequence of 100 frames.

Arch-3 Input Arch-1 Arch-2 Arch-3 Reference

PSNR 23.6647 31.2615 31.5919 32.5201

Figure 6: Visual comparison of three architectures, including Arch-1 (2-layer 1-grid), Arch-2 (2-layer 3-grid), and Arch-3 (7-layer 3-grid)
on the Classroom scene from the Tungsten dataset.

the highlights and glossy reflection. Without the noisy radiance data, lighting effects with respect to surface materials will disappear. This is
reasonable because noisy radiance data includes the interaction between lighting and materials.

4.3. Albedo removal

Our method firstly removes albedo from noisy input frames. Note that meta features including depth, normal and albedo are send to the
denoisers at the same time. Finally, we multiplies albedo back to the denoised result. In Figure 8, we investigated the effect of removing
albedo from the noisy radiance input. As shown in the insets, our denoised result successfully preserves the details from albedo.

4.4. Interactive viewer and multimedia material

In addition to this document, we also upload a compressed package of results with an interactive viewer and a video along with this submis-
sion.
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Ours with radiance Input W/O radiance W radiance Reference

Figure 7: Training our denoiser with and without radiance as an input channel to the network. The test data is a 1-spp rendered image from
the Sponza scene. Including radiance as an input channel to the neural network is important to preserve illumination effects that are not
captured by the other features.

Ours W albedo input W/O albedo input W albedo denoised Ours Reference

PSNR 30.857 31.526

Figure 8: Comparisons of with and without albedo removal from nooisy input radiance. Training is conducted on the 1-sppBMFR dataset
and we show results of the Classroom scene.

5. Derivatives of Neural Bilateral Grid

The bilateral grid construction and slicing modules have been implemented in CUDA as plug-in operators to integrate with TensorFlow. In
this section, we introduce the grid construction, slicing and corresponding derivatives of the neural bilateral grid.
Table 10 lists the definitions of symbols which we will use in the following derivation.

Table 10: Definitions of the symbols which we will use in the following derivation.

δi a scalar, the compression ratio of the W and Hdimensions. δh = δw = δi.
δd a scalar, the compression ratio of D dimension

ImageIn The input image with dimension of (W,H,3)
Guide The guide image with dimension of (W,H)

Grid The bilateral grid with dimension of (W
δi
, H

δi
,D,3)

ImageOut The output image with dimension of (W,H,3)

5.1. Grid Construction

For an element in Grid with the coordinate of (u,v,w,c), the value of the element Grid(u,v,w,c) is the weighted-sum of the pixels with a
cluster of coordinates (x′,y′,c) in ImageIn.

To move the pixels or grid elements to the center between two pixels or grid elements, we use biased coordinates for both the coordinates
of pixels and the coordinates of the bilateral grid (Figure 9). That is to say, we use (u+ 0.5,v+ 0.5,w+ 0.5,c) and (x′+ 0.5,y′+ 0.5,c) in
the calculation of tent(∗,∗). Note that the color channel c is not biased. To reduce clutter, we omit the “+0.5” in the following equations.

Grid(u,v,w,c) can be computed as

Grid(u,v,w,c) =
∑x′,y′ tent

(
x′
δi
,u
)
· tent

(
y′
δi
,v
)
· tent

(
Guide(x′,y′)

δd
,w

)
· ImageIn(x,y,c)

∑x′,y′ tent
(

x′
δi
,u
)
· tent

(
y′
δi
,v
)
· tent

(
Guide(x′,y′)

δd
,w

) , (2)
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v

u

The position of the elements in the bilateral Grid in the calculation of tent(*,*)

The position of the pixels in ImageIn projected on the bilateral Grid in the calculation of tent(*,*)

Grid(0,0) (1,0)

(0,1) (1,1)

ImageIn (0,0)

(1,0) (2,0) (3,0)

(1,2) (2,2) (3,2)(0,2)

(1,1) (2,1) (3,1)(0,1)

(1,3) (2,3) (3,3)(0,3)

Figure 9: The example of the bilateral grid. To move the pixels / grid elements to the center between two pixels / grids, we add an offset of
0.5 for (u,v,w) and (x,y).

where

xle f t ≤ x′ < xle f t +2∗δi

yup ≤ y′ < yup +2∗δi
. (3)

We define tent(m,n) as

tent(m,n) = max(1.0−|m−n|∗,0.0) (4)

To make the tent(∗, ,)∗ differentiable, we define the absolute value function as:

|a|∗ =
√

a2 + ε (5)

where ε = 1e−7.

For convenience, we write:

α = ∑
x′,y′

tent

(
x′

δi
,u
)
· tent

(
y′

δi
,v
)
· tent

(
Guide(x′,y′)

δd
,w

)
· ImageIn(x,y,c) (6)

β = ∑
x′,y′

tent

(
x′

δi
,u
)
· tent

(
y′

δi
,v
)
· tent

(
Guide(x′,y′)

δd
,w

)
(7)

Then,

Grid(u,v,w,c) =
α
β

(8)
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5.1.1. The gradient of Grid w.r.t. ImageIn

The gradient of Grid w.r.t. ImageIn ∂Grid
∂ImageIn has a dimension which is the same with the ImageInW×H×3. The back-propagated gradient

backprop is a matrix which has the same dimension with the Grid.

For each element in ∂Grid
∂ImageInW×H×3

with coordinate of (x,y,c),

∂Grid
∂ImageIn(x,y,c)

= ∑
u′,v′,w′

∂Grid(u′,v′,w′,c)
∂ImageIn(x,y,c)

·backprop(u′,v′,w′,c), (9)

where

ule f t ≤ u′ ≤ ule f t +1

vup ≤ v′ ≤ vup +1

w f ront ≤ w′ ≤ w f ront +1

(10)

with

ule f t =

⌊
x
δi

−0.5
⌋

vup =

⌊
y
δi

−0.5
⌋

w f ront =

⌊
Guide(x,y)

δd
−0.5

⌋
.

We have

∂Grid(u,v,w,c)
∂ImageIn(x,y,c)

=

∂α
∂ImageIn(x,y,c) ·β− ∂β

∂ImageIn(x,y,c) ·α
β2

, (11)

where
∂α

∂ImageIn(x,y,c)

= ∑
x′,y′

tent

(
x′

δi
,u
)
· tent

(
y′

δi
,v
)
· tent

(
Guide(x′,y′)

δd
,w

)
· ∂ImageIn(x′,y′,c)

∂ImageIn(x,y,c)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
· tent

(
Guide(x,y)

δd
,w

)
· ∂ImageIn(x,y,c)

∂ImageIn(x,y,c)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
· tent

(
Guide(x,y)

δd
,w

)
(12)

∂β
∂ImageIn(x,y,c)

=
∂
(

∑x′,y′ tent
(

x′
δi
,u
)
· tent

(
y′
δi
,v
)
· tent

(
Guide(x′,y′)

δd
,w

))
∂ImageIn(x,y,c)

= 0

(13)

Because ∂β
∂ImageIn(x,y,c) = 0, we can rewrite Equation 11 as

∂Grid(u,v,w,c)
∂ImageIn(x,y,c)

=

∂α
∂ImageIn(x,y,c) ·β−0 ·α

β2

=

∂α
∂ImageIn(x,y,c)

β

(14)

Then we can calculate each element in the gradient function ∂Grid
∂ImageIn (Equation 9) using Equation 7, 12, 14.
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5.1.2. The gradient of Grid w.r.t. Guide

The gradient of Grid w.r.t. Guide ∂Grid
∂Guide has a size which is the same as the Guide. Also, the back-propagated gradient backprop is a matrix

which has the same size as the Grid.

For each element in ∂Grid
∂GuideW×H with coordinate of (x,y),

∂Grid
∂Guide(x,y)

= ∑
c

(
∑

u′,v′,w′

∂Grid(u′,v′,w′,c)
∂Guide(x,y)

·backprop(u′,v′,w′,c)

)
, (15)

where the range of u′,v′,w′ is the same as that of Equation 10.

We have

∂Grid(u,v,w,c)
∂Guide(x,y)

=

∂α
∂Guide(x,y) ·β− ∂β

∂Guide(x,y) ·α
β2

(16)

where,

∂α
∂Guide(x,y)

= ∑
x′,y′

tent

(
x′

δi
,u
)
· tent

(
y′

δi
,v
)
·

∂tent
(

Guide(x′,y′)
δd

,w
)

∂Guide(x,y)
· ImageIn(x′,y′,c)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
·

∂tent
(

Guide(x,y)
δd

,w
)

∂Guide(x,y)
· ImageIn(x,y,c)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
·

∂tent(γ,w) 1
δd

∂γ
· ImageIn(x,y,c)

(17)

where

γ = Guide(x,y)
δd

. (18)

∂β
∂Guide(x,y)

= ∑
x′,y′

tent

(
x′

δi
,u
)
· tent

(
y′

δi
,v
)
·

∂tent
(

Guide(x′,y′)
δd

,w
)

∂Guide(x,y)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
·

∂tent
(

Guide(x,y)
δd

,w
)

∂Guide(x,y)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
·

∂tent(γ,w) 1
δd

∂γ

(19)

Then we can calculate the gradient ∂Grid
∂Guide (Equation 15) using Equation 6, 7, 16, 17, 19.

5.2. Grid Slicing

For a pixel in ImageOut with the coordinate of (x,y,c), the pixel value ImageOut(x,y,c) is the weighted-sum of the non-zero elements in the
bilateral grid with coordinates of (u′,v′,w′,c) as shown in Equation 20.

ImageOut(x,y,c) =
∑u′,v′,w′ tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· tent

(
Guide(x,y)

δd
,w′

)
·Grid(u′,v′,w′,c) ·1[Grid(u′,v′,w′,c)> 0

]
∑u′,v′,w′ tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· tent

(
Guide(x,y)

δd
,w′

)
·1 [Grid(u′,v′,w′,c)> 0]

, (20)
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where the range of (u′,v′,w′) is the same as that of Equation 10.

In a similar way to Section 5.1, we use biased coordinate of (u′+ 0.5,v′+ 0.5,w′+ 0.5,c) and (x+ 0.5,y+ 0.5,c) in the calculation of
tent(∗,∗) to move the pixel/grid elements to the center between two pixel/grid elements. Note that, we have omitted “+0.5” in the tent(∗,∗)
to reduce clutter.

For convenience, we write:

μ = ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· tent

(
Guide(x,y)

δd
,w′

)
·Grid(u′,v′,w′,c) ·1[Grid(u′,v′,w′,c)> 0

]
(21)

η = ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· tent

(
Guide(x,y)

δd
,w′

)
·1[Grid(u′,v′,w′,c)> 0

]
(22)

Then,

ImageOut(x,y,c) =
μ
η

(23)

5.2.1. The gradient of ImageOut w.r.t. Grid

The gradient of ImageOut w.r.t. Grid ∂ImageOut
∂Grid has a dimension which is the same as the Grid. The back-propagated gradient backprop is a

matrix which has the same dimension with ImageOut.

For each element in ∂ImageOut
∂Guide W

δi
× H

δi
× 256

δd
×c with coordinate of (u,v,w,c),

∂ImageOut
∂Grid(u,v,w,c)

= ∑
x,y

∂ImageOut(x,y,c)
∂Grid(u,v,w,c)

·backprop(x,y,c) (24)

The range of (x,y) is the same as that of Equation 3.

We have

∂ImageOut(x,y,c)
∂Grid(u,v,w,c)

=

∂μ
∂Grid(u,v,w,c) ·η− ∂η

∂Grid(u,v,w,c) ·μ
η2

, (25)

where
∂μ

∂Grid(u,v,w,c)

= ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· tent

(
Guide(x,y)

δd
,w′

)
·
(

∂Grid(u′,v′,w′,c)
∂Grid(u,v,w,c)

·1[Grid(u′,v′,w′,c)> 0
]
+

Grid(u′,v′,w′,c) · 1
[
Grid(u′,v′,w′,c)> 0

]
∂Grid(u,v,w,c)

)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
· tent

(
Guide(x,y)

δd
,w

)
·
(

∂Grid(u,v,w,c)
∂Grid(u,v,w,c)

·1 [Grid(u,v,w,c)> 0]+Grid(u,v,w,c) · 1 [Grid(u,v,w,c)> 0]
∂Grid(u,v,w,c)

)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
· tent

(
Guide(x,y)

δd
,w

)
· (1 ·1 [Grid(u,v,w,c)> 0]+Grid(u,v,w,c) ·0)

= tent

(
x
δi
,u
)
· tent

(
y
δi
,v
)
· tent

(
Guide(x,y)

δd
,w

)
·1 [Grid(u,v,w,c)> 0] ,

(26)
and γ is defined in Equation 18.

∂η
∂Grid(u,v,w,c)

= ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· tent

(
Guide(x,y)

δd
,w

)
· ∂1

[
Grid(u′,v′,w′,c)> 0

]
∂Grid(u,v,w,c)

= 0

(27)
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Because ∂η
∂Grid(u,v,w,c) = 0, we can rewrite Equation 25 as

∂ImageOut(x,y,c)
∂Grid(u,v,w,c)

=

∂μ
∂Grid(u,v,w,c) ·η− ∂η

∂Grid(u,v,w,c) ·μ
η2

=

∂μ
∂Grid(u,v,w,c) ·η−0 ·μ

η2

=

∂μ
∂Grid(u,v,w,c)

η

(28)

Then we can calculate the gradient ∂ImageOut
∂Grid (Equation 24) using Equation 28, 26, 22.

5.2.2. The gradient of ImageOut w.r.t. Guide

The gradient of ImageOut w.r.t. Guide ∂ImageOut
∂Guide has a size which is the same as the Guide. The back-propagated gradient backprop is a

matrix which has the same size as ImageOut.

For each element in ∂ImageOut
∂Guide W×H with coordinate of (x,y)

∂ImageOut
∂Guide(x,y)

= ∑
c

∂ImageOut(x,y,c)
∂Guide(x,y)

·backprop(x,y,c), (29)

We have

∂ImageOut(x,y,c)
∂Guide(x,y)

=

dμ
dGuide(x,y) ·η− dη

dGuide(x,y) ·μ
η2

(30)

where,

∂μ
∂Guide(x,y)

= ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
·

∂tent
(

Guide(x,y)
δd

,w′
)

∂Guide(x,y)
·Grid(u′,v′,w′,c) ·1[Grid(u′,v′,w′,c)> 0

]

= ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· ∂tent

(
γ,w′)

∂γ
· 1

δd
·Grid(u′,v′,w′,c) ·1[Grid(u′,v′,w′,c)> 0

]
(31)

where γ is defined in Equation 18, the range of (u′,v′,w′) is the same with that of Equation 10.

∂η
∂Guide(x,y)

= ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
·

∂tent
(

Guide(x,y)
δd

,w′
)

∂Guide(x,y)
·1[Grid(u′,v′,w′,c)> 0

]

= ∑
u′,v′,w′

tent

(
x
δi
,u′

)
· tent

(
y
δi
,v′

)
· ∂tent

(
γ,w′)

∂γ
· 1

δd
·1[Grid(u′,v′,w′,c)> 0

]
(32)

Then we can calculate the gradient ∂ImageOut
∂Guide (Equation 29) using Equation 21, 22, 30, 31, 32.
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