
EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Learning to Importance Sample in Primary Sample Space

Quan Zheng and Matthias Zwicker

University of Maryland, College Park, USA
quan.zheng@outlook.com; zwicker@cs.umd.edu

Abstract
Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. We propose a
novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a
set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent
training phase, we learn to generate samples with a desired density in the primary sample space of the renderer using maximum
likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume
preserving (“Real NVP”) transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample
space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp,
which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is
that it is agnostic of underlying light transport effects, and can be combined with an existing rendering technique by treating it
as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.
CCS Concepts
• Computing methodologies → Ray tracing; Neural networks; Importance sampling; Global illumination;

1. Introduction

Importance sampling has been recognized as a key technique for
variance reduction right from the inception of Monte Carlo ren-
dering algorithms [Kaj86]. Today, importance sampling of BRDFs,
environment maps, direct illumination from many light sources, or
visibility are standard features in Monte Carlo path tracing sys-
tems. A number of advanced techniques have also been developed
to jointly importance sample several of these factors. Many of these
approaches rely on an analytical analysis of scene properties, such
as the surface appearance models and BRDFs used in the scenes.

In this paper, we propose a technique that treats an existing
Monte Carlo renderer as a black box and learns how to importance
sample entire paths in primary sample space. Our approach first ac-
quires a set of training samples for a given scene using the existing
renderer. Based on these samples, we learn to generate a desired
scene-dependent target density in the primary sample space (PSS)
of the renderer. In the subsequent rendering step, instead of feeding
the renderer with uniform PSS samples, we provide samples drawn
from the learned target density. By specifying a suitable target den-
sity, we achieve effective variance reduction compared to using the
existing renderer with the usual uniform primary sample space.

The key component of our approach is a recent neural net-
work architecture that was designed to represent real-valued non-
volume preserving (“Real NVP”) transformations in high dimen-
sional spaces. This approach learns a one-to-one, non-linear warp
between two high-dimensional spaces. In addition, the computa-

tion of the warp is structured such that the forward warp, its in-
verse, and the determinant of its Jacobian can all be computed
effectively. We leverage these properties to learn a warp from a
uniform density to a desired non-uniform target density in pri-
mary sample space, and then generate well-distributed PSS samples
for Monte Carlo rendering tasks. Accounting for efficiency issues
with high-dimensional spaces, we adopt practical simplifications
to make learning and sampling the target density tractable in lim-
ited dimensions. The advantages of our approach are that it treats
a renderer as a black box and is agnostic to specific light transport
effects, hence it can be combined with many existing algorithms.

Conceptually, our approach has similarities to several previ-
ous strategies. Primary sample space Metropolis (PSS-MLT) light
transport can also importance sample any desired target density by
operating in primary sample space while treating an existing ren-
derer as a black box [KSKAC02]. PSS-MLT can be inefficient,
however, because it often needs to reject many proposed paths to
achieve the desired density. In contrast, our approach never rejects
samples during rendering. Several previous techniques acquire a set
of initial samples to build up low-dimensional ad hoc data struc-
tures that approximate the desired density, and then can be used to
perform importance sampling during subsequent rendering passes.
The advantage of our approach is that the renderer is treated as a
black box, and the approach does not rely on additional data struc-
tures such as octrees, spatial samplings of the scene, or explicit den-
sity models. Instead, the information learned from an initial set of

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-5053-5511
https://orcid.org/0000-0001-8630-5515

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

samples is captured by the Real NVP neural network. In summary,
the main contribtions of this paper are:

• A novel formulation of importance sampling of entire light paths
as a non-linear warp in primary sample space.
• A novel technique to learn the primary sample space warp using

a suitable neural network architecture.
• A demonstration that this approach can effectively reduce vari-

ance of Monte Carlo path tracers in several scenarios.

2. Related Work

2.1. Importance Sampling in Monte Carlo Rendering

Already when introducing the rendering equation, Kajiya [Kaj86]
discussed importance sampling as a technique to reduce variance in
Monte Carlo rendering. Importance sampling aims to obtain sam-
ples with a probability density that is proportional to a desired tar-
get density function, and by designing target densities similar to
the integrand, variance can be reduced. In Monte Carlo path trac-
ing, the target density function can be defined either as a product of
local densities in an incremental manner, or directly as a density in
global path space. Accordingly, two categories of importance sam-
pling techniques have been studied in past decades.

Incremental sampling. When light paths are constructed in an
incremental way, it is natural to perform importance sampling lo-
cally in each step. For example, BRDF sampling and light sam-
pling techniques construct a path segment by separately mimick-
ing the local distribution of cosine weighted BRDF and incident
illumination, respectively. To further reduce the estimator’s vari-
ance, Veach and Guibas [VG95] introduced multiple importance
sampling to combine the advantages of individual path sampling
techniques. We refer to standard texts for an overview of the ex-
tensive literature [PJH16]. In general, importance sampling tech-
niques can be categorized into two broad groups: a priori meth-
ods that construct target densities and sampling techniques us-
ing analytical approximations of the integrand (for example, Heitz
and d’Eon [Hd14] among many others), and a posteriori methods
that fit target densities based on empirically acquired samples of
the integrand [VKŠ∗14, MGN17, DK17]. The technique by Clar-
berg [CJAMJ05] is an a priori method that performs importance
sampling of products of environment maps, BRDFs, and visibil-
ity by representing them using wavelets. They achieve importance
sampling by evaluating wavelet products on the fly and construct-
ing a hierarchical warp accordingly, which has some similarities to
our warp-based importance sampling. Our approach, however, op-
erates in an a posteriori manner and it does not rely on a specific
representation of the integrand, such as using wavelet products. Our
approach is also more general and can be applied to any light trans-
port effect. Recently, a Bayesian method has been proposed to sam-
ple direct illumination that can be considered a combination of a
priori and a posteriori strategies [VKK18]. Our approach consid-
ers entire light paths instead of performing incremental sampling.

Global sampling. Instead of importance sampling individual
path segments, Metropolis light transport [VG97] treats a complete
path as a single sample in a global path space that is also used to
define the target density. A new path is sampled from a Markov

process by mutating an existing path according to a scalar con-
tribution function. Various parameterizations of path space have
been proposed to efficiently explore it using Markov chain meth-
ods [KSKAC02, JM12, KHD14, LLR∗15], and techniques have
been proposed to combine different parameterizations to further
improve the sampling process [HKD14,OKH∗17,BJNJ17]. Our ap-
proach is similar to global path sampling techniques since we also
importance sample entire paths. In particular, we sample paths in
primary sample space as proposed by Kelemen et al. [KSKAC02],
which is simply a multi-dimensional unit hypercube. As in Kele-
men’s approach, we also build on existing path construction tech-
niques that map primary sample space parameters into geometric
paths, and that we treat as a black box. In contrast, our approach
does not rely on Markov chain sampling, however. Instead, we ob-
tain a non-linear, one-to-one mapping of primary sample space onto
itself that produces the desired target density.

2.2. Deep Learning to Sample Complex Data Distributions

Recently, various neural network architectures have been proposed
to learn generative models of high-dimensional data, such as im-
ages and videos. A generative model transforms random samples
from a latent space into samples of some observable data, for exam-
ple images, such that the distribution of the generated data matches
the distribution of the observed data. Successful techniques include
generative adversarial networks (GANs) [GPAM∗14] and varia-
tional autoencoders (VAEs) [KW14]. Our idea is to use such a
learned mapping from a latent space to a data space to perform
importance sampling of light paths. A key requirement for this
is that we need to be able to efficiently compute the Jacobian
of this mapping, such that we can use it to perform a change of
integration variables. However, the computation of the Jacobian
involved in deep neural network is costly in techniques such as
GANs or VAEs. Instead, we leverage a recent architecture called
“Real NVP” [DSB16] that was specifically designed as an invert-
ible mapping whose Jacobian can be computed easily. Concurrent
work [MMR∗18] also leverages “Real NVP” to construct an invert-
ible mapping for use in Monte Carlo rendering. While they propose
a slightly different representation of such a bijective mapping, in
essence the concept is equivalent to ours.

2.3. Deep Learning in Monte Carlo Rendering

Deep learning has been successfully applied to denoise Monte
Carlo rendering [BVM∗17, CKS∗17], which is common in pro-
duction today. Our approach is orthogonal to these techniques and
can be combined with any denoiser. Neural networks have also
been used as a regression architecture to interpolate radiance val-
ues from sparse samples [RWG∗13, KMM∗17]. These methods
have no guarantees to converge to ground truth solutions, how-
ever, since they directly predict radiance based on a model learned
from a limited amount of data. In contrast, we learn how to sample,
and our sampling densities enable unbiased importance sampling.
While we do not have a theoretical proof that our approach reduces
variance, we demonstrate significant variance reduction in practical
scenarios.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

3. Background

The path integral formulation [VG97] of the rendering equa-
tion [Kaj86] expresses the value I j of each pixel j as an integral
over the space of all light paths,

I j =
∫

Ω

f j(x)dµ(x), (1)

where x is a light path, dµ is a measure on the space of paths, and
f j is the measurement contribution function. In addition, Ω is the
space of all light paths, consisting of the union of light paths of all
lengths k, Ω = ∪kΩk.

An important observation is that there are many ways to param-
eterize light paths, and each parameterization has its own measure
dµ. Considering only light paths of a certain length k, however, it
is always possible to define a mapping Φk from a canonical param-
eterization over the 2(k + 1)-dimensional unit hypercube† to Ωk,
that is, Φk : [0,1]2(k+1) → Ωk. This is also called primary sample
space [KSKAC02], and indeed each Monte Carlo rendering algo-
rithm implicitly evaluates Φk when constructing light paths. Using
Φk to perform a change of integration variables, we can rewrite the
path integral formulation as

I j,k =
∫

Ωk

f j(x)dµ(x) =
∫
[0,1]2(k+1)

f j(Φk(y))
∣∣∣∣∂Φk(y)

∂y

∣∣∣∣dy, (2)

where I j,k denotes the contribution of all paths of length k to pixel
j, y ∈ [0,1]2(k+1), and the notation |·| is shorthand for the determi-
nant of the Jacobian matrix. Figure 1(a) illustrates the notation in
Equation 2.

In this view, incremental importance sampling techniques dis-
cussed in Section 2.1 imply certain mappings Φk from primary
sample space to geometric paths, and the effect of importance
sampling is absorbed in the mapping Φk. Usually, the integral in
Equation 2 is estimated using uniform sampling in primary sample
space,

I j,k ≈
1
N

N

∑
i=1

f j(Φk(yi))∣∣∣ ∂Φk(yi)
∂yi

∣∣∣−1 , (3)

where the yi ∈ [0,1]2(k+1) are uniform random samples. The goal
of importance sampling is to construct suitable mappings Φk with
determinants that are inversely proportional to f j as much as pos-
sible‡, which will reduce variance of the estimate in Equation 3.
Incremental importance sampling approaches, however, rely only
on local information about f j , hence they are unable to account for
non-local effects.

† This assumes that path vertices are on surfaces, and each of them is pa-
rameterized using two numbers. Depending on the details of the renderer,
however, more parameters may be involved in practice, for example to se-
lect BRDF components.
‡ The determinant of the Jacobian is the inverse of the corresponding sam-
pling density.

Uniform PSS Geometric path, length k
Φk

x

y

Uniform PSS Warped PSS Geometric path, length k
Φk

x

yz

Ψk

(a) Conventional approach, uniform primary sample space (PSS)

(b) Our approach, PSS importance sampling using non-linear warp

Pixel j, path
contribution fj

Pixel j, path
contribution fj

Figure 1: Comparison of the conventional approach and ours: (a)
Usually, primary sample space (PSS) is sampled uniformly. Each
point y in primary sample space (PSS) of dimension 2(k+ 1) cor-
responds to a geometric path x of length k via a mapping Φk. Con-
ventional importance sampling is accounted for by the determinant
of the Jacobian of Φk. (b) Our approach introduces a non-linear
warp Ψk in primary sample space to further reduce variance, and
we learn this mapping using a neural network.

4. Primary Sample Space (PSS) Warping

As illustrated in Figure 1(b), the key idea of our approach is to
introduce an additional mapping of primary sample space onto it-
self, acting as a non-uniform warp that leads to a non-uniform PSS
density. We design this density to further reduce the variance of
an existing renderer that evaluates Equation 3, which we treat as a
black box. We learn the warp in a scene-dependent training phase,
and then use it to draw as many samples for rendering as desired.

In the following, we describe how we construct the warp in the
training phase. We start by introducing the details of our problem
statement in Section 4.1, and explain in Section 4.2 how we achieve
the objective of the PSS warp using an a posteriori approach. This
involves first drawing a number of samples from Equation 3 and
resampling them to obtain the desired target density. Then we use
a maximum likelihood estimation of the warp to match the target
density. In Section 4.3 we describe how we represent the warp in
practice using the Real NVP architecture and solve the maximum
likelihood estimation via gradient descent. We describe the details
of the neural networks involved in Real NVP in Section 4.4, and
describe how we use the warp during rendering in Section 4.5.

4.1. Problem Formulation

Let us denote the PSS warp that we will learn as

Ψk : [0,1]2(k+1)→ [0,1]2(k+1). (4)

Assuming this is bijective and differentiable, we can use it to in-
troduce another change of integration variables y = Ψk(z) in Equa-
tion 2,

I j,k =
∫
[0,1]2(k+1)

f j(Φk(Ψk(z)))
∣∣∣∣∂Ψk(z)

∂z

∣∣∣∣ ∣∣∣∣∂Φk(Ψk(z))
∂Ψk(z)

∣∣∣∣dz. (5)

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

Uniform PSS
samples yi, i∈{1...N}

Resampling
subset yi, i∈S

Inverse warp
z = Ψ−1

k(y;θ)

(a) (b) (c)

Figure 2: We illustrate how we learn the inverse warp Ψ
−1
k (y;θ) to

match a target density. (a) We first obtain uniform samples in PSS.
(b) We resample them to obtain samples from the target density. (c)
The inverse warp Ψ

−1
k (y;θ) is computed to maximize the likelihood

of the target samples under the warp.

This leads to the Monte Carlo estimator

I j,k ≈
1
N

N

∑
i=1

f j(Φk(Ψk(zi)))∣∣∣ ∂Ψk(zi)
∂zi

∣∣∣−1 ∣∣∣ ∂Φk(Ψk(zi))
∂Ψk(zi)

∣∣∣−1 , (6)

where the zi ∈ [0,1]2(k+1) are uniform random samples. To reduce
variance of this, we want to design Ψk such that the integrand
in Equation 5 is as close as possible to a constant. Note that the
determinant of the Jacobian of our primary sample space warp,
|∂Ψk(z)/∂z| is the inverse of the desired non-uniform sampling
density in a warped primary sample space, which serves as one
part of the inputs to the black-box renderer.

Practical Simplifications. Our description so far implies that we
would need to learn a mapping Ψk for each pixel. This is impracti-
cal, however, and we will firstly make the simplification to replace
the measurement contribution function f j with the path through-
put f , which is related to the measurement contribution by omit-
ting the pixel filter (also called the importance function). While the
path length k is unlimited in theory, in practice, only paths with
limited length are processed. Additionally, longer paths generally
contribute less to the final image than shorter paths, thus the actual
advantages of importance sampling are reduced after the first few
bounces. Hence, our second simplification is to only learn a PSS
warp for certain limited path lengths m, and go on tracing paths
with uniform random PSS coordinates for later bounces.

4.2. Maximum Likelihood Estimation of the PSS Warp

As illustrated in Figure 2, we follow an a posteriori approach to
learn the PSS warp by first drawing a set of samples from a desired
target density in primary sample space. Then we estimate the warp
under a maximum likelihood objective for these observed samples.

Sampling the Target Density. As mentioned above, in this paper
we use the path throughput f to define our target density as

pY (y) =
f (Φk(y))∣∣∣ ∂Φk(y)

∂y

∣∣∣−1 , (7)

although any other target density could be used. We obtain a set

...
Target

samples y
Latent

samples z

Scale Logit
Stacked bijective
coupling layers Logit-1 Scale-1

z {
b=

1}
z {

b=
0}

Coupling layer, forward mapping Coupling layer, inverse mapping

...

s

exp

t

z'
{b

=
1}

z'
{b

=
0}

add

z {
b=

1}
z {

b=
0}

t

exp

-s

z'
{b

=
1}

z'
{b

=
0}

subtract

Figure 3: Computational structure of our neural importance sam-
pling model based on Real NVP. The core element of this archi-
tecture consists of a set of stacked, invertible coupling layers. The
functions s and t are implemented using neural networks as shown
in Figure 5, and stacking several coupling layers makes it possible
to represent complex, bijective mappings.

of samples S = {yi | i ∈ N+,yi v pY } from this distribution using
a resampling process as proposed by Talbot et al. [TCE05]. This
involves first rendering a set T of candidate samples using a uni-
form PSS density as usual, and storing the PSS parameters and path
throughputs for all samples. Then the subset S is extracted from T
such that S follows the desired target density. The ratio of the sizes
of S and T is determined by a parameter α, that is, |T|= α|S|.

Maximum Likelihood Estimation. We learn the inverse warp z =
Ψ
−1
k (y) using maximum likelihood estimation. Assume the warp is

parameterized using parameters θ, written as z = Ψ
−1
k (y;θ), θ∈Θ.

Here, Θ represents the parameter space of a family of acceptable
distributions. We first observe that the density pY (θ;y) and the warp
Ψ
−1
k are related by the change of variable formula

pY (θ;y) =

∣∣∣∣∣∂Ψ
−1
k (y;θ)

∂y

∣∣∣∣∣ . (8)

Note that this implies that latent variable z = Ψ
−1
k (y) is distributed

uniformly. Considering pY (θ;y) a function of θ, it is also called a
likelihood function. The maximum likelihood estimation approach
tries to find the optimum parameters θ ∈ Θ to maximize the like-
lihood, that the warp produces the data samples yi v pY from uni-
form samples zi. More precisely, maximizing the log-likelihood of
the data samples yi, i ∈ {1, . . . , |S|} can be written as

θ
∗ = argmax

θ∈Θ
∑

i
log

(∣∣∣∣∣∂Ψ
−1(yi;θ)

∂yi

∣∣∣∣∣
)
. (9)

4.3. PSS Warping using Real NVP

We are leveraging a recent neural network architecture dubbed as
“Real NVP” transformation [DSB16] to represent our PSS warp
Ψ and its inverse Ψ

−1. Real NVP provides desired properties that
fit into our problem: it is guaranteed to be bijective, it is easy to
invert, the determinant of its Jacobian can be evaluated efficiently,

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

a()b c d

1 0 1 0 0 1 0 1

a()0 c 0 0()b 0 d

Mask

Input

Output

Figure 4: Element-wise masking of a 4D input vector. Masks are
designed as a binary “checkerboard” mode, where elements of the
mask are set to alternating 0 and 1.

and maximum likelihood estimation can be performed via gradient
descent.

In a nutshell, Real NVP transformations consist of multiple
stacked (concatenated) so-called affine coupling layers as shown
in Figure 3, top. The mapping computed by each coupling layer
is designed to have all the properties mentioned above, and the
concatenation of multiple coupling layers can represent complex
mappings. Assume each coupling layer computes a mapping from
a D-dimensional space onto itself. A key idea is to split the input
vector z into two disjoint parts, which we represent by a binary
mask b of size D. An example of applying element-wise masking
to a 4D vector is shown in Figure 4. Let {b = 1} be the set of in-
dices where the mask has value 1, and similar for {b = 0}. Each
coupling layer forwards the first part of the input z{b=1} directly to
its output. In addition, the second part of the output z{b=0} consists
of an affine mapping that is constructed using functions s(z{b=1})
and t(z{b=1}) of the first part of the input. As shown at the bottom
left of Figure 3, a coupling layer computes

z′{b=1} = z{b=1}

z′{b=0} = z{b=0}� exp(s(z{b=1}))+ t(z{b=1}), (10)

where s and t are functions from R|{b=1}| → R|{b=0}|, and � is
the element-wise product. Crucially, such a coupling layer is trivial
to invert as shown at the bottom right of Figure 3,

z{b=1} = z′{b=1}

z{b=0} =
(

z′{b=0}− t(z{b=1})
)
� exp(−s(z{b=1})), (11)

and its Jacobian is a triangular matrix whose determinant is also
trivial to obtain as exp

(
∑ j s(z{b=1}) j

)
[DSB16]. Neither opera-

tion requires inverting the Jacobians of s and t nor computing their
inverses. Hence they can be arbitrarily complex, and we implement
them using deep neural networks. We describe our network archi-
tecture to implement s and t in more detail below. Finally, we apply
a linear scaling and a logit mapping at the start, and their inverse at
the end of the model. Linear scaling layers are employed to ensure
that values are within valid ranges. We found that this improves
training convergence of our model.

In summary, we implement our PSS warp Ψ and its inverse us-
ing Real NVP with multiple stacked affine coupling layers. Since
each bijective coupling layer only warps part of the input dimen-
sions, we concatenate several coupling layers to warp all dimen-
sions non-linearly. In our experiments, we use eight coupling lay-
ers and masks where either the even or odd bits are set to zero or
one, respectively. We also experimented with other masks, but did
not observe any significant differences. The warp parameters θ in

FC B
N

R
EL
U

FC B
N

R
EL
U

FC B
N

R
EL
U

B
N

R
B
2

...

R
B
N

B
N

R
EL
U

FC
Ta
n
h

R
B
1

Figure 5: The neural network architecture to compute the s and t
functions in a bijective coupling layer consists of N residual blocks
(RB), containing fully connected layers (FC), batch normalization
layers (BN), and ReLU activation units. Additionally, we have fully
connected, batch normalization, and activation layers before and
after the residual blocks. All fully connected layers contain the
same number of neurons.

Equation 9 correspond to the trainable weights of the neural net-
works that define the s and t functions in all coupling layers (each
layer has its own s and t functions, that is, neural networks). We de-
scribe our networks in more detail in the next section. We perform
maximum likelihood estimation of Ψ

−1 using gradient descent and
standard backpropagation techniques for neural networks.

4.4. Neural Network Architecture for Coupling Layers

Figure 5 shows the neural network architecture that we use to com-
pute both the s and t functions in Equations 10 and 11. Each func-
tion in each coupling layer has its own set of trainable network
weights. The network consists of several blocks with residual con-
nections [HZRS16]. Each block contains two fully connected lay-
ers (FC) with batch normalization (BN) and rectified linear unit
(ReLU) activation σ(x) = max(0,x), and a block can be bypassed
via a residual connection. In addition, there are more such lay-
ers before and after the residual blocks. The warping capability
of the model is directly affected by the number of coupling lay-
ers. More coupling layers enable the model to learn complex map-
pings. Meanwhile, using more coupling layers and residual blocks
will lead to relatively long training time. We discuss the exact net-
work parameters in Section 6.

4.5. Generating Rendering Samples

For rendering, we use the forward mapping Ψ, which can easily
be derived from Ψ

−1 as shown above. Note that Ψ reuses trained
parameters of Ψ

−1. We generate an arbitrary number of samples
distributed approximately according to the target density as repre-
sented by the learned warp, as illustrated in Figure 6.

In this paper, path tracing (PT) with next event estimation is uti-
lized as the underlying rendering algorithm to show how it can
be improved via our method. The construction of paths will con-
sume PSS coordinates. Based on the practical simplifications in
Section 4.1, we opt to learn to importance sample dimensions of
the first m bounces (e.g. m = 1,2,3, . . .). After m bounces, we con-
tinue to trace the path using uniform random PSS coordinates.

5. Implementation Details

In this section, we describe datasets used for training, validation
and test. We also provide details of neural network training.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

Uniform PSS
uniform samples zi

Nonuniform PSS
warp y = Ψk(z;θ) Rendering samples

(a) (b) (c)

Figure 6: During rendering, we use the forward warp Ψ to draw an
arbitrary number of samples distributed approximately according
to the target density as shown in this 2D illustration. (a) Uniform
samples in PSS. (b) Warped PSS using Ψ. (c) Non-uniform samples
in PSS, which we provide as input to a black-box renderer.

Training Datasets. We set the number of examples (that is, sam-
ples yi in Equation 9 in a training data set) to k times a certain im-
age resolution, equivalent to k examples per pixel (epp) on average.
For brevity, we will denote a dataset as epp-k. When generating
training data we use small image resolutions. As shown in Table 2,
we chose 160× 88 for the first four scenes, and 100× 100 for the
TORUS scene. Note that final images can be rendered at any de-
sired higher resolution. We empirically found that good resampling
results are obtatined when α is at least 6, and all experiments follow
this heuristic. During training, 80% examples of a training dataset
are randomly selected as training data and the rest are used for val-
idation. Simultaneously, we provide an accompanying test dataset
to test the performance of the neural networks. None of the test data
are used in the training and validation process.

Model Initialization. For faster convergence during scene-
dependent training, we pre-train our neural network to achieve an
identity warp. We use the resulting network weights as initializa-
tion for scene-dependent training, instead of the usual random or
Xavier initialization [GB10]. We have observed that this leads to
faster scene-dependent training convergence in practice.

Training. We train neural networks corresponding to in-
verse warp Ψ

−1 in an end-to-end fashion using the Tensor-
Flow [AAB∗15] framework. The networks are optimized using
Adam [KB14] with a learning rate 10−4 and decay rates β1 =
0.9,β2 = 0.99. Training examples are fed into the neural network
in mini-batches size of 2000, and the order of examples in a mini-
batch is randomly shuffled in each iteration.

6. Results and Analysis

All our experiments are conducted on a workstation with an octa-
core 3.60 GHz i7-7700 CPU and Nvidia GeForce GTX 1070 GPU.
We implement our method based on PBRT [PJH16], and execute
it in a hybrid way using both GPU and CPU. We perform neural
network training and evaluation on the GPU and the renderer runs
on the CPU. We firstly validate the neural network designs in Sec-
tion 6.1 and 6.2, where experiments are in terms of 4D PSS learning
for the COUNTRY KITCHEN scene. Then we apply our approach to
five scenes with a range of challenging settings.

0 10 20 30 40 50 60

Iterations

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

Training loss
CL4, S10
CL4, S40
CL4, S100
CL8, S10
CL8, S40
CL8, S100
CL16, S10
CL16, S40
CL16, S100

0 10 20 30 40 50 60

Iterations

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

Test loss
CL4, S10
CL4, S40
CL4, S100
CL8, S10
CL8, S40
CL8, S100
CL16, S10
CL16, S40
CL16, S100

Figure 7: Training and test loss of different neural network archi-
tectures. CL-i, S- j denotes i coupling layers and j neurons per hid-
den layer. The residual block count is set to 2 and training datasets
use epp-16.

0 10 20 30 40 50 60

Iterations

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

Training loss

epp1
epp4
epp16
epp64
epp256

0 10 20 30 40 50 60

Iterations

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

Test loss

epp1
epp4
epp16
epp64
epp256

Figure 8: Comparisons of training loss and test loss with respect
to the size of training datasets. Sizes ranges from epp-1 to epp-256.

6.1. Neural Network Architecture Validation

The capacity of our neural network to represent complex map-
pings is related to the number of coupling layers and the size of
a hidden layer. To get an efficient sampling model, we tend to use
a lightweight architecture with conservative numbers of coupling
layers. In Figure 7, we compare different combinations of coupling
layer count (CL) and hidden layer size (S). Each training session
runs for 60 epochs. As can be seen, more coupling layers lead to
lower loss values. Given a fixed number of coupling layers, increas-
ing the number of neurons of hidden layers further reduce loss val-
ues. The deep and wide architecture provides the lowest loss values,
while it incurs a long training time of several hours. We empirically
find that eight coupling layers and 40 neurons per hidden layer can
successfully learn 4D to 8D target densities in our experiments and
keep sampling cost small.

6.2. Training Data Size and Density Error

Training data provides an implicit description of the target proba-
bility density function. To examine the effects of different numbers
of training examples, we compare training and test losses with re-
spect to training datasets of five different sizes. During model train-
ing, we use a low image resolution of 160×88 pixels. The dataset
with the smallest size has one example for each pixel on average.

Figure 8 plots the training and test losses for each dataset. As
shown, a lower negative log likelihood can be obtained with an
increasing size of datasets, and the improvements brought by using
more training data gradually reduce beyond epp 16.

In addition, Figure 9 shows relative L1 errors of density values
for both training and test dataset. The relative density errors is com-

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

0 10 20 30 40 50 60

Iterations

0

0.2

0.4

0.6

0.8

R
el

at
iv

e
L1

Training density errors

epp1
epp4
epp16
epp64
epp256

0 10 20 30 40 50 60

Iterations

0

0.2

0.4

0.6

0.8

R
el

at
iv

e
L1

Test density errors

epp1
epp4
epp16
epp64
epp256

Figure 9: Relative L1 density error for training and test processes,
with respect to different sizes of data sets. Each training session
runs for 60 epochs.

puted with

ε =
1
N

N

∑
i=1

|P(Di)−Ti|
max(P(Di),Ti)

. (12)

Here, P(Di) stands for the density deduced by neural networks, Ti
represents the target density value of Di and |·| indicates the abso-
lute value. Target densities are readily obtained up to a normalizing
constant in the resampling process. Using more training data helps
to reduce relative density errors, but the improvement of density
accuracy gets smaller with increasing size of datasets.

6.3. Rendering Results and Further Analysis

In Figure 11, we apply our method to render a range of challenging
scenes. COUNTRY KITCHEN and WHITE ROOM contain complex
visibility settings, and they are dominated by indirect illumination.
SALLE DE BAIN, CLASSROOM and TORUS feature glossy and
specular light transport. Our method treats the underlying Monte
Carlo ray tracing method (path tracing) as a black box, and glob-
ally warps light transport paths in the PSS.

We compare our method with baseline path tracing (PT without
PSS coordinates warping) and a recent kd-tree based PSS warping
method [GBBE18]. Since our method and other methods differ in
the rendering mode of GPU and CPU computations, we show equal
sample budget comparisons. Timings for rendering and the ratios of
zero-radiance paths are presented in Table 1. Our method can learn
the distribution of path contributions and distributes samples ac-
cording to the distribution, thus it effectively reduces the ratio of
zero-radiance paths, which carry no radiance. Time cost of training
neural networks is tabulated in Table 2. We apply two metrics to
measure quality of images: mean squared errors (MSE) and Struc-
tural Similarity Index (SSIM) [WBSS04]. Note that we present the
values 1− SSIM. Hence lower values indicate higher image qual-
ity. Finally, all reference images are rendered with at least 32768
samples per pixel (spp) to get noise-free ground truth.

As described in Section 4.5, we apply PSS warping to the path
prefixes of one, two or three bounce(s), corresponding to dimen-
sionalities of 4D, 6D and 8D in the primary sample space. In our
experiments, next event estimation which is part of the black box, is
enabled for path tracing. For the kd-tree based method [GBBE18],
we use its default settings.

As can be observed in Figure 11, our method in 4D and 6D,
corresponding to warping the first one or two bounce(s), generally

provides lower errors than the baselines. A similar finding is re-
ported in [GBBE18], where they only warp the initial two bounces.
Interestingly, warping more than six dimensions leads to slightly
higher errors. This is mainly because the degrees of freedom of
a PSS vector increase with the number of dimensions. It leads to
overfitting issues that could be avoided by providing more train-
ing data, at the cost of additional training time. Additionally, since
paths with more vertices typically make smaller contributions to the
image than paths with fewer vertices, improved importance sam-
pling of vertices further along a path brings decreasing benefits. A
failure case of our method is the CLASSROOM scene, where our
method does not reduce errors. This scene is equipped with many
small-scale geometries, such as desks and chairs with glossy legs,
which can undermine the correspondence between well-distributed
PSS vectors and light transport paths.

In Figure 12, we demonstrate the ability of our method to ren-
der distribution effects, such as motion blur (POOL BALL scene)
and defocus blur (CHESS scene). Motion blur is controlled by time
samples and shutter opening intervals, and defocus blur is affected
by lens samples and aperture radius. Therefore, we focus on warp-
ing only the first 3D or 4D of a PSS vector, corresponding to com-
ponents of camera samples, and use uniform random data for the
remaining dimensions. Compared to the baseline approach with-
out PSS warping and kd-tree based warping, our method achieves
lower numerical errors and better image quality.

Reference PT no warp Kd-tree warp Ours

MSE 0.00278 0.00104 0.00089
1-SSIM 0.29600 0.23210 0.22370

MSE 0.00944 0.00721 0.00346
1-SSIM 0.32990 0.24950 0.24620

Figure 12: Comparisons of distribution effects: motion blur (Top:
POOL BALL) and depth of field (Bottom: CHESS). Training data
set here uses epp-16.

To obtain an interpretable profile of a warped distribution, we
further visualize distributions of uniform random input samples
and warped samples of the POOL BALL scene in Figure 13. In this
case, 3D PSS warping provides us with an intuitively meaningful
sampling distribution. As can be seen, our method is able to warp

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

Country Kitchen Pool Ball Natural History

101 102

Sample count

10-3

10-2

10-1

100

101

M
S

E
 e

rr
or

s
PT no warp
Kd-tree warp
Our 4D

101 102

Sample count

10-4

10-3

10-2

10-1

100

M
S

E
 e

rr
or

s

PT no warp
Kd-tree warp
Ours

100 101 102

Sample count

10-3

10-2

10-1

100

101

M
S

E
 e

rr
or

s

Uniform light
Uniform cluster
Ours

Figure 10: MSE convergence. For the first two scenes, we compare our method against PT without PSS warp and kd-tree based warp. For
the NATURAL HISTORY scene, we compare our method against uniformly sampling one light and uniformly sampling one cluster.

Table 1: Comparisons of time cost of rendering of different techniques and the ratios of zero-radiance paths (Black ratio). For all method,
images are rendered with 16 spp using 2 threads. Timings for our method include both the sample generation and rendering process.

Scene
PT no warp kd-tree warp Our 4D Our 6D Our 8D

Timing Blk. ratio Timing Blk. ratio Timing Blk. ratio Timing Blk. ratio Timing Blk. ratio

Country Kitchen 65s 27.16% 136s 18.39% 170.8s 9.26% 206.3s 9.54% 238.6s 9.62%
Salle De Bain 54s 8.94% 121s 24.29% 177.4s 4.70% 186.2s 4.45% 221.5s 6.92%
White Room 69s 18.17% 162s 11.91% 184.3s 8.61% 231.1s 7.79% 272.2s 9.30%
Classroom 61s 69.79% 98s 62.74% 210.8s 59.60% 240.4s 60.29% 274.6s 60.67%

Torus 14s 19.86% 42s 42.65% 154.5s 13.28% 168.1s 20.60% 208.2s 14.45%

Table 2: Time cost of training neural networks for 4D, 6D and 8D
data in minutes (m). For each scene, the training example count is
set to epp times the image resolution. Neural networks are trained
for 60 epochs on an Nvidia GeForce GTX 1070 GPU.

Scene Example# 4D 6D 8D

Country Kitchen 16×160×88 19.4m 20.2m 20.8m
Salle De Bain 16×160×88 11.6m 12.1m 12.3m
White Room 16×160×88 15.0m 15.6m 15.9m

Classroom 16×160×88 17.0m 17.2m 17.5m
Torus 16×100×100 9.2m 9.4m 10.7m

samples to increase the density in the area corresponding to mo-
tion blur, while covering the rest of the domain with lower density.
In contrast, the sample distribution of kd-tree warping tends to be
blocky.

In addition, our method can be applied to render complex many-
light direct illumination. The NATURAL HISTORY scene in Fig-
ure 14 contains 92 area light sources and one environment light
map, posing a challenge to traditional light selection and accumu-
lation techniques. We firstly build a light tree to organize all light
sources and split the scene’s space into multiple disjoint regions.
Then we compute light clusters (a.k.a., a lightcut [WFA∗05]) for
each region. Subsequently, we importance sample a 3D PSS distri-
bution to get coordinates for selecting components with high con-
tribution. We compare our method with the baseline method of uni-
formly sampling each individual light and uniformly sampling each
cluster of a lightcut. The baseline method is unaware of the visibil-

ity difficulty, thus most shadow rays are blocked and computation
efforts are wasted. Our method can learn the shape of the manifold
of light path samples in the PSS and generate new samples on the
manifold, thus it achieves a significant error reduction.

Figure 10 illustrates MSE errors with respect to the average spp.
We select one scene from each of the previous three application
categories: PSS path warping, distribution effects, and many-light
rendering. As can be seen, our method generally provides a consis-
tently lower error and converges without introducing bias.

7. Discussion and Limitations

Computation cost. A downside of our approach is that it requires
a training phase that takes on the order of minutes for typical warp
dimensions up to eight. In addition, the accuracy of the density pro-
duced by our warp depends on the amount of training data, and us-
ing more training data increases training time. During rendering,
the evaluation of neural networks to generate samples also incurs
computational overhead. Fortunately, limiting the number of warp-
ing dimensions leads to a useful trade-off between training time
and variance reduction.

Network weights reuse and retraining. Being a data-driven
approach, our training correlates with the current camera view of
a scene. Provided a change of camera view, we can reuse weights
of a trained neural network of the previous camera view to initial-
ize retraining. The reuse of network weights implicitly exploits the
data coherence of different views of a scene, and it significantly ac-
celerates retraining compared to training from scratch; see Section
1 of the supplementary material for experimental results.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space
PT no warp Kdtree warp Our 4D Our 6D Our 8D Reference

COUNTRY KITCHEN MSE
1-SSIM

0.0401 0.0220 0.0170 0.0172 0.0205
0.4097 0.3861 0.3591 0.3571 0.3538

SALLE DE BAIN MSE
1-SSIM

0.2080 0.2687 0.0859 0.0813 0.1178
0.4561 0.4919 0.4000 0.4034 0.4132

WHITE ROOM MSE
1-SSIM

0.2155 0.1235 0.0820 0.0677 0.0832
0.4876 0.4308 0.4231 0.3773 0.4275

CLASSROOM MSE
1-SSIM

0.01277 0.01295 0.01314 0.01329 0.01326
0.4639 0.4387 0.4876 0.4905 0.4877

TORUS MSE
1-SSIM

0.5342 0.7413 0.2996 0.7305 0.6920
0.3946 0.2307 0.2102 0.2210 0.2620

Figure 11: Equal sample count (128 spp) comparisons of path tracing without PSS warping, kd-tree based PSS warping [GBBE18], and our
approach. We warp the first one, two, and three path bounce(s), corresponding to 4D, 6D and 8D in PSS. The training datasets use epp-16.
Due to the small training data, warping in 6D and 8D does not provide benefits over 4D warping in most scenes.
© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

0 0.2 0.4 0.6 0.8 1

Dim0

0

0.2

0.4

0.6

0.8

1

D
im

1

0 0.2 0.4 0.6 0.8 1

Dim0

0

0.2

0.4

0.6

0.8

1

D
im

1

0 0.2 0.4 0.6 0.8 1

Dim0

0

0.2

0.4

0.6

0.8

1

D
im

1

0 0.2 0.4 0.6 0.8 1

Dim0

0

0.2

0.4

0.6

0.8

1

D
im

2

0 0.2 0.4 0.6 0.8 1

Dim0

0

0.2

0.4

0.6

0.8

1

D
im

2

0 0.2 0.4 0.6 0.8 1

Dim0

0

0.2

0.4

0.6

0.8

1

D
im

2

0 0.2 0.4 0.6 0.8 1

Dim1

0

0.2

0.4

0.6

0.8

1

D
im

2

0 0.2 0.4 0.6 0.8 1

Dim1

0

0.2

0.4

0.6

0.8

1

D
im

2

0 0.2 0.4 0.6 0.8 1

Dim1

0

0.2

0.4

0.6

0.8

1

D
im

2

(a) (b) (c)

Figure 13: Visualizations of sample distributions of the POOL

BALL scene’s 3D warping. We compare distributions of 80,000
uniform random input samples (a), warped samples of kd-tree
based approach (b) and our method (c). Our method distributes
more samples to domain corresponding to motion blur and better
cover the whole sampling domain, while the sample distribution of
kd-tree warping tends to be blocky.

Higher dimensional warps. We also experimented with higher-
dimensional warps up to 12D (see the supplementary document),
and were able to obtain error reductions compared to baseline path
tracing up to 12D. This requires more training data and time, how-
ever, and we generally did not observe any further error reduction
compared to 4D or 6D warps. Hence taking advantage of higher
dimensional warps in a practical scenario is an interesting avenue
for future research.

Efficiency of resampling. The resampling process includes a
step to draw initial examples to form a candidate set and another
step to resample examples from the set. Both steps have linear com-
plexity in terms of the number of examples. Since the original dis-
tribution is represented by discrete examples in the candidate set,
an accurate representation requires a relatively large candidate set
and more processing time. Our further experiments (see Section 3
of the supplementary material) investigate the candidate set sizes in
terms of a trade-off between efficiency and quality of resampling.

Small illumination features. Small-scale caustics with fine
structures and glints, caused by specular or highly glossy light
transport, are generally hard to render for many methods. Path trac-
ing based on uniform PSS sampling may “miss” these small fea-
tures, since it is inefficient to sample light paths for such features. In
the supplementary material, we compare our method against base-
line path tracing to show that our approach can efficiently sample
small illumination features given enough training data.

Reference (a) (b) (c)

MSE 0.06328 0.01767 0.01039
1-SSIM 0.3755 0.3170 0.2218

Figure 14: Visual comparisons for complex many-light rendering.
We compare uniformly sampling one light (a), uniformly sampling
one cluster (b) with our method (c), under the the same sample
budget of 64 spp. The training dataset uses epp-16.

Comparison to caching based approaches. In addition to
neural network approaches, previous tabulation based meth-
ods applied caching structures like histogram [DK17], octree,
quadtree [MGN17] or local Gaussian-mixture models [VKŠ∗14]
to learn local, directional sampling densities in an a posterior man-
ner. These structures are embedded in the path space and they con-
duct low-dimensional warping in local regions. In contrast, our
method works in a PSS space to learn a sampling distribution, and
it treats the underlying rendering algorithm as a black box. This
makes it more general to be applied to multiple tasks of importance
sampling, such as light path sampling, distribution effects’ multi-
dimensional sampling, and many-light sampling as shown in the
previous section.

8. Conclusions and Future Work

We introduced a novel approach to learn importance sampling of
entire light paths in primary sample space using a suitable deep
neural network architecture. We leverage the neural network to
perform a non-linear warp in primary sample space, achieving a
desired target density that can further reduce the variance of an ex-
isting rendering algorithm, which is treated as a black box by our
method. Our experiments demonstrated that this approach can ef-
fectively reduce variance in practical scenarios without introducing
bias. A main advantage of our approach is that it is agnostic of
specific light transport effects in any scene, and the underlying ren-
derer. Therefore, it is easy to implement on top of existing systems.
For future work, reducing the computation costs of our approach is
an important and meaningful direction. Another interesting avenue
for future research is to extend our maximum likelihood approach
to a Bayesian framework with a prior, which could allow more ef-
fective scene-dependent training using fewer samples.

Acknowledgements

We thank Jay-Artist, Nacimus, NovaZeeke and Benedikt Bitterli
for constructing and distributing the COUNTRY KITCHEN, WHITE

ROOM, SALLE DE BAIN and CLASSROOM scenes, and Toshiya
Hachisuka for the TORUS scene. This work was supported by Swiss
National Science Foundation project number 169839.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Q. Zheng & M. Zwicker / Learning to Importance Sample in Primary Sample Space

References
[AAB∗15] ABADI M., AGARWAL A., BARHAM P., BREVDO E.,

ET AL.: TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org. URL: https:
//www.tensorflow.org/. 6

[BJNJ17] BITTERLI B., JAKOB W., NOVÁK J., JAROSZ W.: Reversible
jump metropolis light transport using inverse mappings. ACM Transac-
tions on Graphics (TOG) 37, 1 (2017), 1. 2

[BVM∗17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
NOVÁK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
predicting convolutional networks for denoising monte carlo renderings.
ACM Trans. Graph. 36, 4 (July 2017), 97:1–97:14. 2

[CJAMJ05] CLARBERG P., JAROSZ W., AKENINE-MÖLLER T.,
JENSEN H. W.: Wavelet importance sampling: Efficiently evaluating
products of complex functions. ACM Trans. Graph. 24, 3 (July 2005),
1166–1175. 2

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A., SCHIED C., SALVI
M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interactive Recon-
struction of Monte Carlo Image Sequences using a Recurrent Denoising
Autoencoder. ACM Transactions on Graphics (Aug 2017). 2

[DK17] DAHM K., KELLER A.: Learning light transport the reinforced
way. arXiv preprint arXiv:1701.07403 (2017). 2, 10

[DSB16] DINH L., SOHL-DICKSTEIN J., BENGIO S.: Density estima-
tion using real NVP. CoRR abs/1605.08803 (2016). 2, 4, 5

[GB10] GLOROT X., BENGIO Y.: Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics (2010),
pp. 249–256. 6

[GBBE18] GUO J., BAUSZAT P., BIKKER J., EISEMANN E.: Primary
sample space path guiding. In Eurographics Symposium on Rendering -
EI & I (July 2018), Jakob W., Hachisuka T., (Eds.), Eurographics, The
Eurographics Association, pp. 73–82. DOI = 10.2312/sre.20181174. 7,
9

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial nets. In Advances in Neural Information Processing
Systems 27, Ghahramani Z., Welling M., Cortes C., Lawrence N. D.,
Weinberger K. Q., (Eds.). Curran Associates, Inc., 2014, pp. 2672–2680.
2

[Hd14] HEITZ E., D’EON E.: Importance sampling microfacet-based bs-
dfs using the distribution of visible normals. Computer Graphics Forum
33, 4 (2014), 103–112. 2

[HKD14] HACHISUKA T., KAPLANYAN A. S., DACHSBACHER C.:
Multiplexed metropolis light transport. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 100. 2

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2016), pp. 770–778. 5

[JM12] JAKOB W., MARSCHNER S.: Manifold exploration: a markov
chain monte carlo technique for rendering scenes with difficult specular
transport. ACM Transactions on Graphics (TOG) 31, 4 (2012), 58. 2

[Kaj86] KAJIYA J. T.: The rendering equation. In ACM Siggraph Com-
puter Graphics (1986), vol. 20, ACM, pp. 143–150. 1, 2, 3

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 6

[KHD14] KAPLANYAN A. S., HANIKA J., DACHSBACHER C.: The
natural-constraint representation of the path space for efficient light

transport simulation. ACM Transactions on Graphics (TOG) 33, 4
(2014), 102. 2

[KMM∗17] KALLWEIT S., MÜLLER T., MCWILLIAMS B., GROSS
M., NOVÁK J.: Deep scattering: Rendering atmospheric clouds with
radiance-predicting neural networks. ACM Trans. Graph. 36, 6 (Nov.
2017), 231:1–231:11. 2

[KSKAC02] KELEMEN C., SZIRMAY-KALOS L., ANTAL G., CSONKA
F.: A simple and robust mutation strategy for the metropolis light trans-
port algorithm. In Computer Graphics Forum (2002), vol. 21, Wiley
Online Library, pp. 531–540. 1, 2, 3

[KW14] KINGMA D. P., WELLING M.: Auto-encoding variational
bayes. In ICLR (2014). 2

[LLR∗15] LI T.-M., LEHTINEN J., RAMAMOORTHI R., JAKOB W.,
DURAND F.: Anisotropic gaussian mutations for metropolis light trans-
port through hessian-hamiltonian dynamics. ACM Transactions on
Graphics (TOG) 34, 6 (2015), 209. 2

[MGN17] MÜLLER T., GROSS M., NOVÁK J.: Practical path guiding
for efficient light-transport simulation. In Computer Graphics Forum
(2017), vol. 36, Wiley Online Library, pp. 91–100. 2, 10

[MMR∗18] MÜLLER T., MCWILLIAMS B., ROUSSELLE F., GROSS
M., NOV’AK J.: Neural importance sampling. arXiv preprint
arXiv:1808.03856 (2018). 2

[OKH∗17] OTSU H., KAPLANYAN A. S., HANIKA J., DACHSBACHER
C., HACHISUKA T.: Fusing state spaces for markov chain monte carlo
rendering. ACM Transactions on Graphics (TOG) 36, 4 (2017), 74. 2

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation, 3 ed. Morgan Kaufmann,
2016. 2, 6

[RWG∗13] REN P., WANG J., GONG M., LIN S., TONG X., GUO B.:
Global illumination with radiance regression functions. ACM Trans.
Graph. 32, 4 (July 2013), 130:1–130:12. 2

[TCE05] TALBOT J. F., CLINE D., EGBERT P.: Importance resam-
pling for global illumination. In Proceedings of the Sixteenth Euro-
graphics Conference on Rendering Techniques (Aire-la-Ville, Switzer-
land, Switzerland, 2005), EGSR ’05, Eurographics Association, pp. 139–
146. 4

[VG95] VEACH E., GUIBAS L. J.: Optimally combining sampling tech-
niques for monte carlo rendering. In Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques (1995), ACM,
pp. 419–428. 2

[VG97] VEACH E., GUIBAS L. J.: Metropolis light transport. In Pro-
ceedings of the 24th annual conference on Computer graphics and inter-
active techniques (1997), ACM Press/Addison-Wesley Publishing Co.,
pp. 65–76. 2, 3

[VKK18] VÉVODA P., KONDAPANENI I., KŘIVÁNEK J.: Bayesian on-
line regression for adaptive direct illumination sampling. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018).
2

[VKŠ∗14] VORBA J., KARLÍK O., ŠIK M., RITSCHEL T., KŘIVÁNEK
J.: On-line learning of parametric mixture models for light transport
simulation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 101. 2,
10

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing 13, 4 (2004), 600–612. 7

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: A scalable approach
to illumination. ACM Trans. Graph. 24, 3 (July 2005), 1098–1107. 8

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://www.tensorflow.org/
https://www.tensorflow.org/

	1 Introduction
	2 Related Work
	2.1 Importance Sampling in Monte Carlo Rendering
	2.2 Deep Learning to Sample Complex Data Distributions
	2.3 Deep Learning in Monte Carlo Rendering

	3 Background
	4 Primary Sample Space (PSS) Warping
	4.1 Problem Formulation
	4.2 Maximum Likelihood Estimation of the PSS Warp
	4.3 PSS Warping using Real NVP
	4.4 Neural Network Architecture for Coupling Layers
	4.5 Generating Rendering Samples

	5 Implementation Details
	6 Results and Analysis
	6.1 Neural Network Architecture Validation
	6.2 Training Data Size and Density Error
	6.3 Rendering Results and Further Analysis

	7 Discussion and Limitations
	8 Conclusions and Future Work
	References

