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Abstract
Rendering with full lens model can offer images with photorealistic lens effects, but it leads to high computational costs. This
paper proposes a novel camera lens model, NeuroLens, to emulate the imaging of real camera lenses through a data-driven
approach. The mapping of image formation in a camera lens is formulated as imaging regression functions (IRFs), which map
input rays to output rays. IRFs are approximated with neural networks, which compactly represent the imaging properties and
support parallel evaluation on a graphics processing unit (GPU). To effectively represent spatially varying imaging properties
of a camera lens, the input space spanned by incident rays is subdivided into multiple subspaces and each subspace is fitted
with a separate IRF. To further raise the evaluation accuracy, a set of neural networks is trained for each IRF and the output is
calculated as the average output of the set. The effectiveness of the NeuroLens is demonstrated by fitting a wide range of real
camera lenses. Experimental results show that it provides higher imaging accuracy in comparison to state-of-the-art camera
lens models, while maintaining the high efficiency for processing camera rays.
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1. Introduction

Real-world lens effects, such as depth of field, bokeh and distortion,
are strongly influenced by the interaction of light with a camera lens.
To obtain realistic lens effects, we usually have to resort to simu-
lating the image formation of a real camera lens, which contains an
array of lens elements. However, accurately simulating light trans-
port through all lens elements of a camera lens is computationally
expensive.

In past decades, much research work in computer graphics has
been conducted to simulate camera lenses and their image forma-
tion. Several camera lens models, such as pinhole model, thin lens
model and thick lens model, have been designed according to basic
geometrical optics principles. Full lens model [KMH95] provides
a brute-force solution to simulate the image formation. Recently,
Taylor polynomial model [HHH12] is proposed to approximate the
image formation with a polynomial system. The interaction between
a ray and a lens element is expressed as a polynomial basis, and the
polynomial system of a camera lens is constructed by concatenating

all polynomial bases. Truncation operation is utilized to control
the number of terms, but it leads to accuracy loss. In addition, it
can be hard to represent camera lenses with unknown interior lens
elements, or non-analytic lens surfaces.

In this paper, we propose the NeuroLens for simulating image
formation of real camera lenses. Firstly, we formulate the mapping
from incident rays to emergent rays as an imaging regression func-
tion (IRF), which describes the imaging properties of a camera lens.
We then model the IRF with an acyclic multi-layer feed-forward
neural network. Neural networks learn the mapping from accurate
ray samples, which are produced by spectral ray tracing in an off-
line renderer. In addition, the parallel structure of neural networks
also enable the efficient evaluation on GPU.

Secondly, to exploit the local coherence of imaging properties of a
camera lens, we subdivide the space spanned by all incident rays into
multiple subspaces. We fit a separate IRF for each subspace. Instead
of using a single neural network, we construct a neural network
ensemble to model an IRF. The output of an IRF is approximated by
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the average output of neural networks in the ensemble. Therefore,
the error caused by a single neural network which falls in a local
optimum can be alleviated.

The NeuroLens provides a new data-driven model for simulating
real camera lenses. It is able to produce high-quality images similar
to those generated by accurate ray tracing in a full lens model, and
it can process camera rays more efficiently with parallel evaluation.

The rest of the paper is organized as follows: Section 2 sum-
marizes previous work. Then, the definition of IRF is presented in
Section 3. Details of the NeuroLens are given in Section 4, followed
by more specific implementation details. In Section 6, we validate
robustness of the NeuroLens and compare it with state-of-the-art
camera lens models. Before the conclusion, several issues with re-
spect to the design of a NeuroLens are discussed in Section 7.

2. Previous Work

2.1. Camera lens models

Geometrical camera lens models. The most basic camera lens
model in computer graphics is the pinhole model with an ideal point-
sized aperture. It originates from the basic optical imaging model
in optics. Subsequently, thin lens model [PC81] with infinitesimal
thickness and finite aperture size is proposed in the research of
rendering depth of field. Because of its simplicity, thin lens model
is widely applied in real-time rendering. However, advanced lens
effects, including monochromatic aberrations and chromatic aber-
rations, cannot be produced by thin lens model. As an extension,
thick lens model [KMH95] with finite thickness and finite aper-
ture is designed to approximate camera lenses. Then, Kolb et al.
[KMH95] propose a full lens model, which comprises a sensor, sev-
eral lens elements and stops. They employ distributed ray tracing
[CPC84] in the camera lens to produce nearly accurate lens effects.
Unfortunately, it requires a large amount of computation of ray-lens
intersection within a camera lens and costs considerable time. Stein-
ert et al. [SDHL11] and Wu et al. [WZHX13] further extend the full
lens model to render chromatic aberrations caused by dispersion of
lens elements.

Polynomial models. Approaching from another perspective,
Hullin et al. [HHH12] propose an approximate model based on Tay-
lor polynomials. The interactions between a ray and a lens element,
including propagation, refraction and reflection, are formulated as
a set of polynomial bases. Along the route, Lee and Eisemann
[LE13] apply a first-order polynomial system to render lens flare
at real-time frame rate. While the Taylor polynomial model can
be applied for rendering lens flare, it is not accurate enough for
general imaging. Hanika and Dachsbacher [HD14] propose a cali-
bration step to optimize the coefficients of polynomials, effectively
improving the imaging precision. However, some complex camera
lenses, such as wide-angle and ‘fisheye’ lenses, can hardly be well
calibrated. The above methods construct the polynomial system for
a camera lens by concatenating the polynomial basis of each lens
element. To limit the increase of polynomial terms and its orders,
truncation operation is performed to restrict the polynomial to a
fixed order. Unfortunately, loss of imaging accuracy is introduced.
To obtain high accuracy with limited polynomial terms, Schrade
et al. [SHD16] propose to fit a sparse polynomial model from high-
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Figure 1: Schematic of a Schneider F/4.5 lens. By convention, ob-
ject space is on the left and coordinates of z-axis increase from right
to left. The camera lens (shaded area) can be abstracted as a ‘black
box’ which transforms an incident ray to an emergent ray.

order polynomials, which is able to simulate difficult wide-angle
lenses.

By contrast, the NeuroLens learns the mapping between inci-
dent rays and outgoing rays via supervised training on accurate
path-traced ray samples. There is no additional accuracy loss in
the construction process. Furthermore, because of the subdivision
of input space and the use of neural network ensemble, a trained
NeuroLens can achieve high imaging accuracy for a wide range of
camera lenses, including the challenging wide-angle lenses.

2.2. Neural network applications in computer graphics

Neural networks have been adopted in several topics. Grzeszczuk
et al. [GTH98] use neural networks to synthesize animation se-
quences and fit animation controllers. Then, Nowrouzezahrai et al.
[NKF09] give a method for producing self-shadowing based on
neural networks. In 2011, Dachsbacher [Dac11] utilizes neural net-
works for classifying different visibility configurations. Ren et al.
[RWG*13] propose to predict local radiance in the scene with neu-
ral networks. Recent year has witnessed more applications of neu-
ral networks, such as relighting of photos [RDL*15], vector tex-
ture compression [SWWW15] and removal of Monte Carlo noise
[KBS15]. By contrast, this paper leverages neural networks to ap-
proximate the mapping of image formation, which can be formu-
lated as an IRF.

3. Imaging Regression Function

Many applications in computer graphics try to reproduce images
as realistic as ones produced by real cameras. Commodity optical
cameras are designed with sophisticated combination of multiple
lens elements, stops and a sensor. Figure 1 shows the schematic of
a Schneider F/4.5 camera lens [S*05].

In the imaging process of a camera lens, incident rays from the
scene traverse all lens elements and reach the sensor to form an
image. A camera lens can be viewed as a mapping between inci-
dent rays and outgoing rays, which transforms the light field in the
scene to the light field at the sensor. The calculation of outgoing
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rays via the mapping boils down to a regression problem. Thin lens
model and thick lens model approximate the mapping with perspec-
tive transformation matrix, whereas the full lens model evaluates
the mapping with brute-force distributed ray tracing. Polynomial
models approximate the mapping with polynomials.

We define an IRF � to express the above mapping. The IRF is
designed in terms of the vector representation of an incident ray
R(p, d), where p is the origin and d represents the unit direction
vector along the ray. If dispersion of lens elements is considered,
wavelength λ can be included to obtain �(p, d, λ).

A camera lens is treated as a ‘black box’ module, which trans-
forms an incident ray Ri(p, d) to an emergent ray Re(p′, d′) with:
Re(p′, d′) = �(Ri(p, d)). Rays may enter a camera lens from either
the sensor side (forward ray tracing) or the scene side (backward ray
tracing), therefore a pair of IRFs can be defined for the two cases.

Note that Fresnel reflection is not included in the NeuroLens.
Rays involving an odd number of Fresnel reflections, will revert
its direction and then exit from the entrance or hit the lens barrel,
leading to discontinuities in �. Similarly, rays involving an even
number of Fresnel reflection do not contribute to normal imaging,
but produce lens flare. In addition, stochastic scattering and diffrac-
tion are not included, because the IRF is defined on deterministic
imaging properties.

4. NeuroLens Model for Imaging

In this section, we firstly introduce the neural network IRF to rep-
resent the mapping of image formation. Then, we describe the de-
tailed design of a NeuroLens. After that, we illustrate the supervised
training procedure, focusing support and cascaded design. Lastly,
we depict the Jacobian computation of a NeuroLens.

4.1. Neural network representation for IRF

According to Gaussian optics, the mapping of image formation has
a linear form in the paraxial region of an ideal optical system. How-
ever, the paraxial region is theoretically defined as an infinitesimal
area. The mapping in most off-axis regions is non-linear because of
the inherent aberrations of an optical system.

We utilize neural networks to represent non-linear IRFs. Neural
networks with one or two hidden layers can approximate any contin-
uous and square-integrable function with desired accuracy provided
sufficient network size and training samples [HSW89]. Besides,
neural networks have a compact form and are efficient to evaluate
in parallel. To obtain a representation of �, we need to decide the
proper structure of neural networks.

Neural network structure. We adopt the acyclic multi-layer per-
ceptron model. It can be abstracted as a directed and weighted graph
(shown in Figure 2), whose nodes are organized into several layers.
Nodes within two adjacent layers are fully connected by weighted
edges. Input layer comprises nodes representing each element of an
input vector (p, d, λ). Output layer consists of nodes corresponding
to components of an output vector (p′, d′). Intermediate layers are
called hidden layers which contain adaptable number of nodes.

st nd

p

d

′p

′dλ

Figure 2: Two-dimensional directed graph for a neural network
with two hidden layers. Nodes in adjacent layers are connected
with directed edges.

We represent an incident ray with Ri = (x, y, u, v, w, λ). Here,
x and y correspond to Cartesian coordinates of the origin. Note
that the z component of the origin is omitted, because all incident
rays starting from the same plane with equal z. (u, v, w) is the
unit direction vector of Ri , and λ stands for a wavelength within
the visible spectrum. If the spectral effect is not needed, λ can be
removed from Ri . Similarly, we represent an outgoing ray with
Re = (x ′, y ′, u′, v′, w′), where (x ′, y ′) and (u′, v′, w′) represent the
origin and direction vector, respectively. We move origins of all
outgoing rays to the plane with z = 0 (Figure 1), and therefore
z′ is omitted. Fluorescence and phosphorescence rarely occur in a
camera, thus the wavelength of an outgoing ray remains the same as
the incident ray and λ is not included in Re. It is a rule-of-thumb to
reduce the dimension of output vectors, because it helps to reduce
the inference work conducted by neural networks.

As to the parametrization of a ray’s direction, we test the angular
form (α, θ ), the light field form (m,n), the normalized form (u, v, w)
and its reduced form (u, v) . For the same training data, the (u, v, w)
empirically gives lower relative prediction error than others, thus
(u, v, w) is adopted in the paper.

Layers are indexed from 1 to N , starting from the input layer. We
denote the i-th node in the k-th layer as nk

i . The node count of the
k-th layer is Mk . nk

i (k > 1) receives inputs from all nodes in the
preceding layer. The output Y k

i of the node is calculated by imposing
a transfer function σk to the weighted sum of all the inputs.

Y k
i = σk(Sk

i ); Sk
i =

Mk−1∑
j=1

wk
ij · Y k−1

j + wk
i0. (1)

Here, Sk
i stands for the weighted sum. wk

ij is the weight of connection
from nk−1

j to nk
i . Y k−1

j is the output of node nk−1
j in the (k − 1)-th

layer. wk
i0 is a bias term. σk is a non-linear transfer function, to which

the non-linear property of neural networks is mainly attributed. We
use a hyperbolic tangent function σk = 2/(1 + e−2t ) − 1. It is of
similar shape as the logistic function σk = 2/(1 + e−t ), but it is
symmetric about the origin. For the output layer, the output Y k

i of a
node nk

i is equal to the weighted sum of all its inputs, that is, σk = 1.

In this paper, we use neural networks with two hidden layers.
The node count M of a hidden layer is controlled by a threshold �.
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For simplicity, each hidden layer has equal number of nodes. We
empirically decide M by starting from M = 4 and increase it if the
relative prediction and testing error of neural networks exceeds ε

(0.2–0.8%). Neural networks with more than two hidden layers are
seldom used for fitting functions, for it is practically difficult to train
them. While multi-layer feed-forward network with one hidden layer
can approximate many functions with any degree of accuracy, a large
number of nodes may be needed to represent complex functions.
Unfortunately, neural networks with too many nodes are prone to
over-fitting [HYPI*12]. Generally, neural networks with two hidden
layers can approximate a function with fewer nodes than using one
hidden layer.

NeuroLens training The neural network representation of an
IRF can be expressed as �(R, W), where R represents an input ray
and W is the weight matrix of a neural network. Given a training
data set of 	 training samples {(Ri, T i) | i = 1 · · · 	}, where Ri

is the input vector and T i is the corresponding output vector, we
determine �(R, W) by regulating W to minimize the following loss
function:

E =
	∑

i=1

‖ T i − �(Ri, W) ‖2 . (2)

The loss function measures the sum of squared errors between out-
puts of � and target values.

Training samples are generated by performing distributed ray
tracing in a spectral full lens model. We use Latin hypercube sam-
pling [MBC00] to generate stratified ray samples. It is beneficial to
use stratified training samples across the sampling space to capture
the imaging properties as complete as possible. Besides, Neural net-
work training converges more quickly on training samples with low
correlations. We train neural networks on the training data set with
Levenberg–Marquardt (LM) algorithm [HM94], in which weight
matrices are updated after all training samples have been presented
for once.

In rendering, a trained NeuroLens can be directly integrated into
a renderer as an independent module. This module simply receives
incident rays and outputs outgoing rays which enter the scene sub-
sequently.

4.2. Focusing support

Focusing is a basic function of real cameras and it is usually achieved
by adjusting the position of several lens elements. There are no lens
elements in a NeuroLens, so we achieve focusing by moving the
sensor. Shifting the sensor leads to the change of focal distance,
and therefore the change of depth of field. In Figure 3, if the sensor
is placed at 
3, rays from A form a blurry pattern (i.e. bokeh) on
sensor. After moving the sensor to 
0, these rays converge to a
focused point on 
0.

As to typical imaging configuration, the sensor is located at a
distance more than the focal length from the rear pupil. For the
NeuroLens, we use a fixed sensor plane located at the focal point
of image space. The NeuroLens is trained on rays traversing two
fixed planes 
1 and 
2 (Figure 3). After shifting the sensor, ray

0Π
1Π2Π

b
b′a

c

3Π

A

Figure 3: Focusing is supported by adjusting the position of sen-
sor plane, without changing the NeuroLens. A plane/plane light
transport is implemented from b to b′.

Figure 4: To handle the discontinuities caused by aperture stop, a
two-stage cascaded structure is designed. An output ray of �1 is
sent to �2 as the input, if it passes the aperture stop.

propagation in free space is calculated between the sensor plane
and 
1.

4.3. Cascaded NeuroLens

Given an incident ray of a camera lens, it can be blocked by the
aperture stop. Blocked incident rays give no outgoing rays, thus in-
troducing discontinuities in the IRF. To fit the discontinuities caused
by the aperture stop, neural networks with more complex structure
and far more training samples have to be used. Instead, we propose
to use two-stage cascaded NeuroLenses (Figure 4) and handle the
aperture stop independently.

In particular, we separately construct a NeuroLens for lens ele-
ments on each side of the aperture stop. The output of �1 is used
as the input of �2. The discontinuities caused by the aperture stop
are accurately handled using simple ray–plane intersection test. As
the aperture stop is separately considered, various shapes of the
aperture stop can be applied. Similarly, camera lenses with more
than one aperture stop can be handled with multi-stage cascaded
NeuroLenses as above.
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Figure 5: (a) A 2D example of kd-tree subdivision scheme. The
bounding volume for collecting training samples extends each di-
mension of the subspace (b) for d, and it is further normalized to a
unit hypercube (c) before training.

4.4. Input space subdivision and local fitting

Because of the inherent optical properties of lens elements, the
images of most objects in the scene do not coincide with their ideal
(Gaussian) images. The deviation from the ideal images is dubbed
aberrations, including five Seidel aberrations (spherical aberration,
comet, astigmatism, field of curvature and distortion) and chromatic
aberrations.

The distribution of aberrations is a function of field of view and
aperture size. If a camera lens is represented with a single neural
network, a high number of nodes will be needed to fit the het-
erogeneous imaging properties. Neural networks with many nodes,
however, spend longer time in both training and evaluation. Besides,
over-fitting is likely to happen if training samples are not sufficient.

To cope with the above issue, we partition the six-dimensional
input space constituted by all input vectors into multiple non-
overlapping subspaces. All subspaces are organized by a kd-tree.
Non-leaf nodes store splitting axes and the position of splitting
plane, and leaf nodes represent local subspaces. Each subspace is
locally fitted with a separate IRF.

Initially, the entire input space � is set as the root node of kd-tree.
We firstly determine the node count M for hidden layers using the
method in Section 4.1. If M exceeds �, the root node is subdivided.
Then the kd-tree is constructed in a top-down approach. A 2D
subdivision scheme is shown in Figure 5. A node space is recursively
subdivided into two subspaces, if the relative training error of its
IRF with M = � is larger than a threshold (0.2–0.8%). Before a
subdivision operation, we try each splitting axis in turn and select
the one which leads to the lowest relative training error and testing
error in child nodes. The splitting plane is chosen at the midpoint of
a splitting axis.

The IRF for a leaf node is trained on local training samples. Eighty
percent samples are used for training, and the rest is used for testing.
To alleviate the boundary discontinuity caused by non-overlapping
subdivision, local training samples are collected in a slightly larger
bounding volume which extends each dimension of a subspace by
10% (Figure 5c).

4.5. Neural network ensemble

NeuroLenses are trained with LM algorithm. While it converges
fast, it is not bound to find the globally optimum weight matrix W

Table 1: Fitting statistics of four camera lenses: single bi-convex, DGauss
F/1.35, wide-angle F/3.4 and fisheye F/7.7 [S*05].

Camera lenses
Lens
count

Ensemble
size �

Storage
(KB)

Training
time (h)

Bi-convex 2 3 6 2.78 1
DGauss 11 3 10 46.26 3
Wide-angle 14 3 12 115.38 6
Fisheye 8 4 16 310.92 7.5
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Figure 6: Relative testing error for training four cameras lenses:
(a) single bi-convex lens, (b) DGauss F/1.35 lens, (c) wide-angle
F/3.4 lens and (d) fisheye F/7.7 lens. N = 5122 is the total pixel
count.

of the neural network. There are many local minima on the surface
of the loss function (Equation 2). Training process may trap at local
minima of the surface. Neural networks which fall into local optima
provide suboptimal results.

To alleviate the influence of a single neural network which falls
into a local optimum, we leverage a neural network ensemble [HS90]
to model an IRF. A neural network ensemble consists of a set of
neural networks. A neural network in the ensemble is independently
trained on a different subset of the training data. The output of an IRF
is set as the average result of a neural network ensemble. With the
averaging operation, the deviated output of a single neural network
which converges to a local optimum can be effectively corrected.

For each subspace, we fit a neural network ensemble to model the
local IRF. We empirically find that an ensemble size between three
and five works well for all camera lenses tested in this paper.
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Figure 7: Analysis of how the relative training error and testing
error are affected by the spectral sampling rates. The prediction
error goes down as the rate increases.

4.6. Jacobian calculation

Monte Carlo ray tracing methods compute a pixel measurement by
integrating a measurement contribution function over the path space.
If the first vertex of a path is set on the sensor (e.g. b in Figure 3),
the measurement contribution function can be defined as

f = We(b)G(b↔c)L(c, -ωi). (3)

Here, L represents the incident radiance at c along a direction ωi ,
and We is the importance. G(b↔c) is a generalized geometric factor
between b and c, and it can be computed from the transport Jacobian,
which consists of partial derivatives. We derive the calculation of
partial derivatives and Jacobian in the Appendix.

In a camera lens, several lens elements are located between the
sensor and the aperture. To implement aperture-based importance
sampling, Newton iteration method [HD14] can be applied to it-
eratively adjust the direction of the initial ray such that it goes
through the aperture. Partial derivatives of the IRF to the direc-
tion components are computed with d�/d{u, v} (the Appendix). In
the NeuroLens, partial derivatives of an IRF and Jacobian can be
simultaneously computed in the feed-forward process.

5. Implementation Details

Training details. As suggested in [TF95], the proper size of a
training data set is usually more than 10 times the number of weights.
We assign the size as the product of samples per pixel (spp) and
pixel count. For an image with fixed resolution, we adjust the spp
to obtain enough samples. Prior to training, all training samples are
firstly standardized with zero mean and unit variance, and they are
further normalized to a range [−1, 1]. The pre-processing step is
adopted because it helps to accelerate the convergence of training.
All weights and bias values are initialized with random values in
(−1, 1).

We train the neural network with LM algorithm in a batch-
mode. Weights are updated after all training samples have been pre-
sented for once [HM94]. As with a neural network ensemble, each
network is trained on a separate subset of samples which are ran-
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Figure 8: (a) Analysis of kd-tree subdivision with respect to � and
(b) analysis of the relative error and storage as to ensemble size.

Table 2: Accuracy and speed comparison. The testing data set contains
1.17M valid rays. For the Taylor polynomial model, plain for-loop evalu-
ation is implemented, whereas compiled native code is used for the fitted
polynomial model. The ensemble size of the NeuroLens is 3. As to the imple-
mentation of NeuroLenses on GPU, a thread block handles 1024 rays. The
timing is given in seconds.

Camera
Taylor

polynomial
Fitted

polynomial NeuroLens
NeuroLens

(GPU)

Bi-convex 0.228/21.1 0.213/17.1 0.195/17.9 0.191/1.6
DGauss 0.325/27.4 0.255/17.9 0.156/49.2 0.162/4.1
Wide-angle 0.478/32.7 0.327/18.6 0.193/43.2 0.189/5.6
Fisheye 0.768/26.8 0.573/18.1 0.283/57.4 0.303/6.9

domly selected from the training data. In this paper, we use 80%
samples for training and the remaining 20% for testing.

IRF evaluation. The NeuroLens is designed as an independent
module which can be easily integrated in a renderer. We test a trained
NeuroLens in a hybrid mode of both CPU and GPU. The generation
of initial camera rays and subsequent radiance estimation in the
scene are conducted with eight threads on CPU (one thread per
ray). The evaluation of a NeuroLens is implemented with CUDA
on GPU. The input vectors of eight rays constitute a matrix . For
an initial ray, the traversing kernel on CUDA firstly searches the
kd-tree down to a leaf node. A GPU thread processes one column
(a ray) of  and returns a set of neural network identifiers. For a
neural network evaluation kernel, each GPU thread feeds forward
one element of the input vector and evaluates the output.

Rays clipping. The NeuroLens fit a camera lens based on valid
rays which can pass through all lens elements. The restriction of
aperture stop is separately handled by accurate ray tracing. To further
reduce the invalid rays which are blocked by stops of other lens
elements, lens barrel and lens hood, we clip rays at both the rear
pupil and the front pupil.

6. Results

The neural network training is implemented on CPU and rendering
is implemented in a hybrid mode with both CPU multi-threads
and GPU. All experiments are conducted on a workstation with a
dual quad-core 2.4 GHz Intel Xeon CPU and Nvidia Quadro 6000
graphics card.
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We simulate four typical camera lenses using the proposed Neu-
roLens. The settings and statistics for fitting are listed in Table 1.
The number of IRFs mainly depends on both the imaging properties
and the complexity of each neural network.

6.1. Method validation

In this section, we firstly validate the robustness of the training
method. As for spectral rendering, we analyse the training error
and testing error as to the spectral sampling rate. Subsequently,
we analyse how the subdivision is affected by �. In the above
analysis, the ensemble size of each leaf node is 1. Following that, we
validate the use of neural network ensembles. Finally, we compare
the evaluation accuracy and performance of the NeuroLens with
two polynomial models.

Training method. The training of neural networks involves the
selection of training samples, initial conditions and the size of train-
ing data set. To examine how the training method behaves with
different training data sets, initial weights and selection of train-
ing samples, we fit each camera lens in Table 1 for five times.
Each time 80% samples are randomly selected from the training
data, and neural works are randomly initialized with weights from
(−1, 1). Figure 6 plots the relative testing error with respect to train-
ing sets of different sizes. The relative testing error is calculated
by

ε =
√∑	

i=1 ‖ �(Ri, w) − T i ‖2∑	

i=1 ‖ T i ‖2
. (4)

The deviation of points on a column in Figure 6 characterizes the
variance. For the same training data set, the training method is not
sensitive to the selection of training samples and initial weights. As
the size of training data set increases, both the relative testing error
and variance decrease.

Spectral sampling rate. The accuracy of spectral ray tracing in
a camera lens is mainly affected by the number of discrete spec-
trum samples. In this paper, we use equidistant wavelength samples
within the visible spectrum range. Figure 7 plots the testing and
training error of IRFs as to the spectral sampling rates. It indicates
that the training error is not sensitive to the spectral sampling rate,
because training may stop early once the preset error threshold is
achieved. The prediction error drops as the spectral sampling rate
increases, but the line gets stable after the rate exceeds 7. As higher
spectral sampling rate leads to more training samples and thus longer
training time, we set it to 6 in this paper.

Subdivision granularity. With an error-driven partition mode,
the subdivision granularity is directly affected by the complexity
of the neural network used for each subspace. The complexity of
a neural network is restricted by �. Figure 8(a) illustrates how the
number and storage of neural networks change with �. The camera
lens used here is the DGauss F/1.35 and the ensemble size is 1. With
a small �, the kd-tree is partitioned into many leaf nodes, therefore
requiring larger storage space. By contrast, a larger � results in
fewer leaf nodes. We find that � between 6 and 16 generally works
well for all camera lenses in the experiments.

Figure 9: (a) Focus is set at the plane of dots and central dots
get focused. (b) Polygonal bokeh is caused by the clipping with a
hexagonal aperture stop. (c) After reducing the aperture size by half,
blur and aberrations can be greatly reduced.

Neural network ensemble. Neural network ensemble is helpful
to mitigate the influence of a single neural network which traps in a
local optimum. Figure 8(b) plots the relative testing error and model
storage with respect to different ensemble sizes. The reduction of
relative testing error justifies the use of neural network ensemble.
Yet, the improvement of evaluation accuracy gradually fades after
the ensemble size exceeds 5. Meanwhile, the storage size rises al-
most linearly as the ensemble size increases. Taking into account the
evaluation efficiency, a relatively small ensemble size is preferred.
We set the ensemble size as 3–5 in the experiments.

Accuracy and efficiency comparison. We fit the above four
camera lenses and compare the NeuroLens with the Taylor poly-
nomial model [HHH12] and the fitted polynomial model [HD14]
under the same conditions. All models are implemented with one
thread on CPU, and are evaluated with the same testing data. The
statistics are tabulated in the central three columns of Table 2. In
each column, the left side is the relative testing error, and the right is
the timing for generating rays from these models. For the bi-convex
lens, all the three models are able to robustly fit it with similar low
error. For the complex ‘fisheye’ lens, the NeuroLens yields lower
testing error. The NeuroLens costs more time than others because of
the lookup in kd-tree and evaluation of neural network ensembles,
but it pays back with low testing error. Implementing neural net-
works evaluation and kd-tree lookup on GPU provides a speed-up
(see columns 4 and 5 in Table 2).

6.2. Rendering results

In this part, we test the NeuroLens by rendering various aberra-
tions, simulating focusing, and comparing with two state-of-the-art
polynomial models [HHH12, HD14]. For polynomial models, we
utilize the suggested settings from the original papers. All scenes
are rendered with LuxRender [lux13] at a resolution of 512 × 512
pixels. As to the aberration scene, path tracing [Kaj86] is applied.
The rest scenes are rendered by the stochastic progressive photon
mapping (SPPM) [HJ09] for its robustness to handle complex global
illumination.

In Figure 9, we fit the single bi-convex lens with an aperture at
f/4, whose aberrations are not corrected. The NeuroLens faithfully
produces typical Seidel aberrations. When the focus is set at the
plane of dots in Figure 9(a), the periphery dots and central dots
cannot be focused at the same time. Colour shift around the dots
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Figure 10: (a–c) show the focusing effect via moving the sensor. The distance from sensor to the inner pupil is given below each image. All
distances are in millimetres. (d) Equal time rendering result of a full lens model.

Figure 11: Equal time comparisons (1.5 h). The reference image is rendered with a full lens model using 92 h. See the loss of details and
false chromatic contouring in (a). Image shift can also be observed in (a) and (b) (see area indicated by blue arrow).

is caused by dispersion of lens elements, which is called chromatic
aberration. The polygonal shape of dots in Figure 9(b) is mainly
affected by the clipping at the aperture stop. Figure 9(c) shows that
stopping down the aperture generally reduces the overall blur and
off-axis aberrations.

Figure 10 shows the room scene imaged with the DGauss F/1.35
lens. Via moving the sensor, the change of focal distance can be
achieved (Figures 10 a–c). Note the triangular bokeh in the de-
focus region of Figure 10(a) is caused by a triangular aperture
stop. Figure 10(d) gives the equal time result rendered with a full
lens model, whose focusing configuration is the same as that in
Figure 10(c). Because of the compact structure of the NeuroLens and
parallel evaluation for camera rays, the NeuroLens behaves more
efficient than the full lens model and produces a result with less
noise.

The natural history museum scene in Figure 11 is photographed
by the wide-angle F/3.4 lens. Here, comparisons focus more on

the integrity of image content. The Taylor polynomial model loses
details at the far-end windows, where the window frames almost
disappear. Besides, there are noticeable chromatic stripes at the
dormer (red inset of Figure 11a). Both polynomial models lead to
overall shift of the image (see the red close-up view). In contrast,
the NeuroLens robustly preserves important details and produces
a result that is close to the reference. Here, we evaluate the image
quality with structural similarity (SSIM)[WBSS04] instead of MSE,
because image content of the results is not exactly the same.

Figure 12 shows the shots of the museum scene produced by
Merte Muller F/7.7 lens [S*05], which is a challenging ‘fisheye’
lens with field of view of 160◦. Note that, in no means can the thin
lens model generate the “fisheye” effect. False chromatic contour-
ing and blurriness can be observed in Figure 12(a) (see blue and
green insets). Because of the extremely wide field of view, both
polynomial models cannot reliably capture the complete imaging
properties, causing decrease of field of view and evident loss of
image content (see the red close-up view). Besides, overall radially
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Figure 12: Equal time comparisons (2 h). The reference image is rendered with a full lens model for 96 h. The overall radially expansion and
loss of image content are shown in blue and green insets.

Figure 13: Equal time comparisons (3 h) except for the reference
image which is rendered for 40 h. (a) The polynomial system is
globally fitted [HD14] with 30K rays. (b) A polynomial system is
locally fitted for each subspace. The same input space subdivision
and training data set containing 2.33M rays are used for both (b)
and (c). Notice the ‘fisheye’ distortion (see the area indicated by
blue arrow) is better reproduced by the NeuroLens.

outward expansion can be observed in Figures 12(a) and (b). In
contrast, the NeuroLens faithfully fit the camera lens and reproduce
a result which is closer to the reference image.

Figure 13 compares the fitting of the Merte Muller fisheye F/7.7
lens. The model of Figure 13(a) is fitted with the method of [HD14],
which uses several thousands of ray samples to globally optimize
polynomial coefficients. We make an attempt of applying the input
space subdivision and local fitting to polynomial model (Figure

Table 3: Comparison of different hidden layer count. The 2nd column
records the minimum required neuron count for each hidden layer. The
number of successful training is in the 4th column.

Hidden
layers#

Min
neurons# Weights#

Success
training#

Average
iters#

1 19 233 29 69.3
2 8 173 30 23.1
3 6 119 26 36.1

Table 4: Efficiency comparison of Jacobian calculation. The ensemble size
of the NeuroLens is 1. The testing data set contains 1.17M valid rays and
the timing is given in seconds.

Camera Hanika method NeuroLens NeuroLens (GPU)

Bi-convex 16.9 19.7 2.6
Fisheye 17.8 29.6 4.7

13b). Each subspace is fitted with a 5×4 polynomial system. The
same kd-tree subdivision scheme and training data are used for
Figures 13(b) and (c). Coefficients of polynomials are optimized
using Levmar [Lou15] with its default parameters. Compared with
the reference image, the globally fitted polynomials cannot well fit
the lens, exhibiting different distortions at the image boundary. The
locally fitted polynomial model (Figure 13b) brings improvements
and gives a better result than the globally fitted one, whereas the
NeuroLens faithfully preserves the field of view and reproduces the
distortion that is closer to the reference.
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Figure 14: Equal time comparison (2 h) between a partially trained
NeuroLens (b) and a completely trained one (c). The reference image
(left) is rendered for 30 h.

7. Discussion

The number of hidden layers. We compare neural networks with
1 to 3 hidden layer(s) by fitting the DGauss F/1.35 lens with the
same training data. Training is repeated 30 times. The training error
threshold is 0.2% and the same kd-tree subdivision with four leaf
nodes is used. The maximum allowed number of iterations is set
to 200. Table 3 presents the statistics. As can be noticed, neural
networks with two hidden layers provide higher successful training
rate and cost fewer iterations. Therefore, we use two hidden layers
in the experiments.

Performance of Jacobian calculation. Transport Jacobian con-
sists of the derivatives of IRF to each element of an input vector. The
calculation can be performed simultaneously in the feed-forward
pass of an input vector (Appendix). We compare the performance
of Jacobian evaluation between the NeuroLens and the fitted poly-
nomial model using 1 thread on CPU. Polynomials are evaluated
with compiled native code. As shown in the central two columns of
Table 4, the performance of the fitted polynomial model for different
camera lenses are similar. The NeuroLens of the ‘fisheye’ camera
lens consumes more computation time, because it is represented
with complex neural networks. Implementation of the NeuroLens
on GPU reduces its time cost.

Extension for Monte Carlo ray tracing. In addition to SPPM,
the NeuroLens can support general Monte Carlo ray tracing methods
like bidirectional path tracing (BPT) and Metropolis light transport
(MLT).

In BPT [LW93], if the first vertex of a camera subpath is on the
front pupil, it involves no geometric term within the camera. If the
first vertex is on the sensor, geometric term within the camera is
required in the Monte Carlo estimator. The forward light tracing
along light subpath is implemented in an adjoint NeuroLens fitted
from the front pupil to the rear one. To reduce the discrepancy
between a forward NeuroLens and a backward NeuroLens, we train
the backward NeuroLens with an ‘adjoint’ training data set, which is
built by reversing the directions of rays in the training data set used
for training the forward one. This is a reasonable choice because
light paths are generally reversible in an optical system.

MLT [VG97] tends to sample new paths in the proximity of
paths with large contribution. Taking into account the dependence
between a new path and the histories, it is better to assign a thread to
each Metropolis sampler which independently runs a Markov chain.

Limitations and future work. NeuroLenses depend on the local
coherence within each dimension of the input space. The subdivision
of input space and localized training ensure the local coherence in
most regions. But, the imaging properties which are not encoded in
the training data can hardly be deduced by NeuroLenses. Training
NeuroLenses from incomplete training data results in poor fit to the
IRFs.

Figure 14 shows a chess scene imaged with two NeuroLenses.
The first one is trained on paraxial rays (the angle between a ray
and the optical axis is less than 10◦), and the other one is trained
on the complete training data set. It can be seen that the first
model (Figure 14b) cannot recover the missing imaging proper-
ties and yields irregular bokeh patterns, whereas the second one
(Figure 14c) learns more imaging properties and its result is closer
to Figure 14(a). Notice that this case is also used to illustrate that
dispersion can be switched off in a NeuroLens. The wavelength
component is accordingly removed from the input layer.

The efficiency of NeuroLens evaluation on GPU depends on the
pace of an incident ray bundle. When implementing BPT with a
NeuroLens in a hybrid mode, bidirectional subpath connections
may degenerate the throughput of GPU. In addition, MLT randomly
accepts a candidate path, which may disrupt the pace of the ray
bundle and reduce the GPU throughput. Designing robust GPU
implementation of BPT and MLT compatible with the NeuroLens
would be an interesting avenue for future work.

The evaluation of a NeuroLens on GPU is currently limited by
the number of initial rays generated with CPU threads. While more
CPU threads are expected to be used, the cost for managing and
synchronizing CPU threads also rises with the thread count. We
find it is a good trade-off to use eight threads in our experiments.
To raise the number of initial rays, ray tracer implemented on GPU
can be employed to accelerate the generation of initial rays.

The NeuroLens is defined in the geometrical optics sense, thus
it cannot account for phenomenons of the physical optics, such
as diffraction and interference. Also, the Fresnel reflection is not
included, thus it cannot be directly applied to generate lens flare.
A remedy method is to enumerate all possible lens flare light paths
[HESL11] and fit a separate IRF for each path.

8. Conclusion

We have presented a new camera lens model, NeuroLens, using
a data-driven approach. Our method exploits neural networks to
approximate the locally coherent mapping between incident rays and
emergent rays, which is formulate as an IRF. The NeuroLens learns
the IRF from accurate ray samples. To ensure that the NeuroLens
achieves high accuracy across the input space, we subdivide the
input space into local subspaces and organize subspaces with kd-tree
for fast lookup. Besides, we further improve the evaluation accuracy
of the NeuroLens via neural network ensembles. Compared with
other camera lens models, the NeuroLens is able to provide higher
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imaging accuracy for a wide range of real camera lenses and yields
images which are closer to the reference ones.
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Appendix: Partial Derivatives and Jacobians Calculation for
the Neural Networks

We set the bias input to 1, and wk
i0 is the weight of the bias input.

Equation (1) can be rewritten as

Y k
i = σk

(
Sk

i

)
; Sk

i =
Mk−1∑
j=0

wk
ij · Y k−1

i . (A1)

Here, we take a neural network with four layers as an example
(Figure 2). The i-th output in the output layer, Y 4

i , is calculated with

Y 4
i = σ4

⎛
⎝ M3∑

j=0

wij · σ3

⎛
⎝ M2∑

r=0

wjr · σ2

⎛
⎝ M1∑

t=0

wrt · Y 1
t

⎞
⎠

⎞
⎠

⎞
⎠ . (A2)

Then, the partial derivative of Y 4
i to input Y 1

t can be computed with

∂Y 4
i

∂Y 1
t

= σ ′
4

(
S4

i

) · ∂S4
i

∂Y 1
t

= σ ′
4

(
S4

i

) ·
⎛
⎝ M3∑

j=0

wij · σ ′
3

(
S3

j

) · ∂S3
j

∂Y 1
t

⎞
⎠

= σ ′
4

(
S4

i

) ·
⎛
⎝ M3∑

j=0

wij · σ ′
3

(
S3

j

) ·
M2∑
r=0

(
wjr · σ ′

2

(
S2

r

) · wtr

)⎞⎠ .

The Jacobian J can be constructed by taking deriva-
tives of output to every component of the input vector as
dY 4

{1,···,M4}/d{Y 1
1 , · · · , Y 1

M1 }. To support the implementation of the
NeuroLens on GPU, it is useful to express J in the form of matrix
multiplication:

J = Dσ4 W34Dσ3 W23Dσ2 W12. (A3)

Here, Wij stands for the matrix of weights from layer i to layer
j and they are known after the training step. Dσk

(k = 2, 3, 4) is a
diagonal matrix:

Dσk
=

⎛
⎜⎝

σ ′
k(Sk

1 )
. . .

σ ′
k(Sk

Mk )

⎞
⎟⎠ , (A4)

where σ2 and σ3 are hyperbolic tangent functions and their deriva-
tives are σ ′

k(Sk
i ) = 1 − (σk(Sk

i ))2. σ4 is a linear function and its
derivative is 1. Note that Wij is known and σk(Sk

i ) can be cal-
culated in the feed-forward process. As a result, the calculation
of J can be carried out along with the feed-forward of an input
vector.
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