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Abstract Lens effects are crucial visual elements in the syn-
thetic imagery, but rendering lens effects with complex full
lens models is time-consuming. This paper proposes a poly-
nomial regression-based approach for constructing a sparse
and accurate polynomial lens model. Terms of a polynomial
are built adaptively in a bottom-up approach. Depending on
the distribution of aberrations, this approach partitions the
light field and builds separate polynomial models for local
light fields. A line pupil-based sampling method is presented
to accelerate the generation of camera rays. In addition, a new
Monte Carlo estimator is derived to support general Monte
Carlo rendering. Experiments show that this approach sig-
nificantly reduces the time cost of constructing a polynomial
lens model in comparison to state-of-the-art methods, while
achieving high imaging accuracy.
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1 Introduction

Photo-realistic rendering has achieved great advances in the
past decades. Nowadays, we can synthesize digital images
of forests, sunset, rainbow and hair with unprecedented
realism. However, simulating plausible camera lens-related
phenomena remains a challengingproblem.When it comes to
advanced defocus blur, aberrations and distortions, detailed
structure of real camera lenses has to be considered. A large
amount of computation is required for accurately copingwith
all lens elements of a complex camera lens.

Polynomial optics [1] provides a constructive kit to build
a polynomial system for describing the optical properties of a
real camera lens. Polynomial fitting [2] is later introduced to
improve the imaging precision. Recently, sparse high-degree
polynomial (SHDP) [3] is proposed to select significant terms
from a bulk of candidate terms. While it can find the best
combination of polynomial termswithin a predefined degree,
it requires considerable time if the predefined degree is set
to a large value or the number of samples is large.

In this paper, we propose a novel approach to adaptively
construct a sparse and accurate polynomial lens model in
a machine learning manner. The construction process starts
from basic low-degree terms, and it automatically builds nec-
essary terms.We design heuristic complication operators that
build new terms based on existing terms, andwe also develop
simplification operators that remove less significant terms to
constrain the number of terms. Both theoretical and empirical
comparisons show that our method behaves more efficient at
constructing a polynomial regression model.

In addition, based on the observation that lens aberrations
vary with respect to off-axis distances, we thus exploit the
local coherence of a light field and partition the input light
field into local subregions. Then, we separately construct
polynomial systems for subregions.
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Rays traversing in a complex camera lens can be blocked
by obstacles like stops or the lens barrel, without exiting
the camera lens. To increase the survival rates of rays, we
present a method for sampling camera rays based on pre-
computed line pupils. Line pupil-based sampling enables fast
generation of camera rays at runtime. Besides, we derive a
new Monte Carlo estimator to support the combination of
general Monte Carlo rendering methods and the proposed
polynomial regression model.

2 Previous work

2.1 Simplified lens models

Pinhole camera is the simplestmodel for rendering. Thin lens
model [4] simulates camera lenses with a finite aperture stop,
and its length is infinitely small. Thick lens model [5] con-
siders the length of a lens system. Matrix optics [6] derives
the matrix form of refraction and reflection using the parax-
ial approximation. The matrix of a lens system is constructed
by multiplying the matrices corresponding to lens elements.
As to real-time rendering, image-based lens model [7] and a
single spherical lens element [8] are employed for rendering
lens effects.

2.2 Full lens model

Kolb et al. [5] design a detailed lens model. Each element is
modeled as a concrete geometrical body; therefore, it incurs
ray intersection tests. It is time-consuming tofire rays through
a lens systemwithmany elements. Afterward, opticalmateri-
als of lens elements are considered [10,11] to support spectral
rendering of lens effects. Full lens model is also applicable
to render advanced lens effects, like lens flares [9] and dis-
tortions [5].

Kolb et al. exploit an ideal exit pupil to guide camera
rays through the lens system. Steinert et al. [10] propose
a method to pre-compute valid pupils for individual pix-
els. Hanika and Dachsbacher [2] introduce an aperture-based
sampling method to pilot rays through the aperture, but the
Newton iteration implementation adds extra cost to each ray.
In this paper, we exploit virtual pupil-based sampling. We
pre-compute virtual pupils for line segments on the sensor.

2.3 Taylor polynomials

In the lens design area, polynomials have been applied to
assist lens design [12], and to model optical aberrations
[13]. They are, however, not designed for the rendering
purpose.

Hullin et al. [1] express the refraction, reflection and
propagation of rays as Taylor polynomials. The polyno-

mial system of a lens system is constructed by sequentially
substituting a polynomial system into the next one. Taylor
expansion is conducted at the optical axis, and the precision
of polynomials is not enough for off-axis points. 1-degree
Taylor polynomials are applicable to render lens flares [14]
at interactive frame rate.

2.4 Polynomial fitting

Hanika and Dachsbacher [2] introduce a fitting procedure
to optimize the coefficients of Taylor polynomials. Recently,
Schrade et al. [3] introduce the sphere/sphere parametrization
at the front lens to support extreme wide-angle lenses. To
speed up the evaluation, they utilize orthogonal matching
pursuit [15] to select a few terms from all candidate terms.
While it can find the optimal combination of terms, the search
process costs nearly exponential time. In contrast,wepropose
an adaptive method to construct a sparse polynomial system,
and it completes the work in polynomial time.

2.5 Feature selection

For polynomial regression, terms of a polynomial system
can be viewed as features to describe the target system.
Sequential forward search and backward search provide [16]
preliminary solutions to select features from a fixed number
of candidates. Adaptive basis function construction methods
[17,18] build new features from existing ones, but it may
produce a model with inadequate or excessive features if
the search traps in a local optimum. Inspired by them, we
adaptively construct a polynomial system to represent a lens
system.

3 Polynomial regression framework

In rendering, camera lens model builds the connection
between the light-carrying rays in a scene and incident rays
on the camera sensor. The connection can be expressed as a
function � : V → V which transforms an incident light
field at the outer pupil to an outgoing light field at the
sensor.

Polynomials have been widely used in optics to describe
aberrations. In this paper, we use a polynomial system to
approximate the function �. Given an incident ray Ri , the
outgoing ray Ro can be calculated by a polynomial regres-
sor Ro = �(Ri ). We use a 5D vector (x, y, u, v, λ) to
represent Ri and another 5D vector (x̄, ȳ, ū, v̄, η) for Ro

(Fig. 1).
A polynomial system consists of five polynomials, each

of which is a linear combination of multiple terms. The poly-
nomial of the i-th output variable is
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Fig. 1 Schematic of a fisheye lens (Rolf Muller 16 mm, USP 4647161
[19]) (left). A ray at the sensor with wavelength λ is expressed in plane-
based parametrization (x, y, u, v, λ). It is transformed to an outgoing

ray on the outer pupil. The outgoing ray is denoted in a sphere-based
parametrization (x̄, ȳ, ū, v̄, η) [3]. η is the Fresnel transmittance. The
entire lens system can be abstracted as a polynomial system (right)

�i =
∞∑

a=0

∞∑

b=0

∞∑

c=0

∞∑

d=0

∞∑

e=0

β · xa ybucvdλe, (1)

where β is the coefficient of a term and a, b, c, d, e are
exponents. The degree of a term is defined as the sum of
its exponents. The degree of a polynomial is defined as the
maximum degree of terms.

We construct a polynomial system in a data-driven mode.
We firstly build all terms and then decide the coefficients of
terms by fitting them to reference rays data. As to the change
of focus distance, we move the sensor toward the rear lens to
focus at a farther distance in the scene, and vice versa.

4 Adaptive sparse polynomial regression

Polynomials with high-degree terms can generally fit a com-
plex nonlinear target function. Given an allowed maximum
degree dmax and p independent variables, the total number
of possible terms is

∏p
i=1 (1 + dmax/ i). Large value of dmax

thus results in a combinatorial explosion of term count.
Taking into account the storage and evaluation of polyno-

mials, it is reasonable to select a small number of important
terms from optional terms. However, as the degree increases,
it also becomes a problem to find the best combination of
terms from a large number of candidate terms. Besides, it
can be hard to decide an appropriate dmax.

In this paper, we construct terms of a polynomial system in
a bottom-up approach. The construction process starts from
the most basic term. It then adaptively constructs new terms
using heuristic search. It does not require any preset degree
threshold, and it is able to generate polynomials of arbitrary
complexity.

The collection of terms of a polynomial can be viewed as a
state. Constructing a polynomial is thus equivalent to search
a state � in the state space. We move from the current state
to a new one by adding a term, deleting terms or modifying
the degree of an existing term. The search is implemented in

a greedy mode to minimize the sum of squared errors

� = argmin
�

∑

(ri ,ro)∈S
‖ro − �(ri )‖2, (2)

where (ri , ro) is a reference ray sample in set S. A state
transition is performed only if the found new state leads to
lower errors. After a state transition, we update the current
accuracy achieved by the new state. The construction process
stops if it cannot find a better state or the current accuracy
satisfies the preset threshold.

4.1 Initial state

A term of the polynomial can be written as a product of the
power of input variables: βi · xai1 yai2uai3vai4λai5 . Here, i is
from 1 to infinity, ai j ( j = 1 . . . 5) is a nonnegative integer
exponent of the j-th variable. In our method, the initial state
is the polynomial containing only the 0-degree term.

A polynomial with K terms can be recorded as a K × 6
matrix (e.g., Eq. 3). The first column stores the coefficients
of terms. The other five columns record exponents of each
input variable. Thus, the initial state is a matrix with merely
the first row of Eq. 3.

A =
⎡

⎢⎣
β1 0 0 0 0 0
β2 1 0 1 2 0
· · · · · · · · ·
βK aK1 aK2 aK3 aK4 aK5

⎤

⎥⎦. (3)

4.2 Heuristic search operators

We define two types of heuristic search operators. Forward
operators implement complication operations via adding
new terms to the current state. Backward operators carry
out simplification operations by deleting existing terms or
decreasing the degree of a term. The change of degree is
controlled by a step size parameter t . Figure 2 shows a part
of the state transitions.
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Fig. 2 State transitions in the state space. A state is expressed in a
matrix form and coefficients are omitted for brevity

4.2.1 Forward operators

Forward operators will add new terms to the current state. It
is necessary to ensure that a new term is not a duplicate of
existing terms. We design two forward operators.

(F1) Adding a copy of an existing term and increasing one
of its exponents by t .

(F2) Adding a new term with only one of its exponents
being set to t and the others 0. The operator constructs
univariate t-degree terms. It is implemented only if the
corresponding term is not included in the state.

4.2.2 Backward operators

Similarly, we define two backward operators to simplify the
current state. The simplification is conducted via reducing
unnecessarily high degree of terms or deleting unnecessary
terms.

(B1) Selecting one of the existing terms, and decreasing
one of its exponents by t . The remaining exponents
should be nonnegative, otherwise the decrease is not
implemented.

(B2) Deleting one of the existing terms if the current state
contains more than two terms.

4.3 Model fitting and evaluation

Since a polynomial is a linear combination of terms, we use
the least-squares method to fit a polynomial model to train-
ing data. We adopt the mean squared error (MSE) to measure
the accuracy of a fitted polynomial model. After performing
an operator, a set of candidate polynomials is constructed.
Least-squares method is applied to obtain coefficients of
polynomials and evaluate fitting errors. The polynomial with
the minimum error is picked as the next state.

The construction process stops if errors of the polynomial
model drop below preset thresholds.We use a threshold 10−7

for the output variables x̄ , ȳ and η, whereas we use 10−10 for
ū and v̄, because their orders of magnitude are smaller than
other variables.

4.4 Replacement and recursion

Polynomial models with a large number of terms are prone
to over-fitting if training data are not sufficient. In addi-
tion, polynomial models which contain too many terms also
incur high computational cost.Many applications ofmachine
learning limit the number of features to 40 [20]. We empiri-
cally find that 40 terms work well to approximate a camera
lens.

The polynomial construction process is implemented in
a greedy mode, and it may find more than 40 terms. If the
number of terms exceeds 40, we perform a replacement oper-
ation, which replaces the least significant term in the current
model with a newly found term.

Initially, the step size t is set to 1. The search in the state
space may trap at a local optimum. We check the case and
perform a recursion operation. If the construction process
cannot find a better state, we increase t by 1. After t exceeds
three, it empirically does not lead to better models; thus we
stop the recursion if t exceeds three.

4.5 Algorithm and its complexity

Our method is listed in Algorithm 1. Its inputs are the initial
state {t̂}, the training set S, the maximum number of terms
Γ , and the recursion depth L .

In this section, we compare the computational complexity
of the SHDP [3] and ourmethod. SHDP assumes that the best
model can be found in a predefined set T of terms within a
degree p. For a polynomial with d independent variables,
T contains M = (p+d

p

)
terms. Large value of p results in a

combinatorial explosion of the term count.
SHDP assumes that the best model contains K terms. Ini-

tially, it searches the optimum combination of K terms from
T, and the number of states to be evaluated is

(M
K

)
. Then,

SHDP iteratively selects the (K+1)-th term from the remain-
ing M − K candidates. The number of evaluated states is
(M − K ) · F , where F is the number of iterations. After-
ward, each existing term is replaced with the newly found
one. The number of states to be evaluated is (M −K ) ·K · F .
The approximate total number of evaluated states is

(
M

K

)
+

(
M − K

1

)
· (K + 1) · F. (4)

In ourmethod, the branch factor of a state depends on both
the number of variables d and the number of existing terms
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ϕ. For the operator (F2), the number of candidate states is d.
For the operator (F1) and (B1), the count of candidate states
is ϕ · d. As to the operator (B2), it is ϕ. Therefore, the upper
bound of candidate states is of the order O(d + 2dϕ + ϕ) =
O(dϕ). Our method adds one term to the model at a time,
and the number of states to be evaluated is of the order

O

(
K∑

i=1

di

)
= O

(
d

K∑

i=1

i

)
= O (d · K (K + 1)/2) . (5)

In the replacement step, the number of evaluated states is
dK · E , where E is the number of iterations. Each existing
term is replaced with a newly found candidate, thus the num-
ber of state to be evaluated is dK 2 · E . To sum up, the total
number of evaluated states is of the order

O
(( 1

2 + E
)
dK 2 + ( 1

2 + E
)
dK

) = O
(( 1

2 + E
)
dK 2

)
. (6)

For instance, we substitute d = 5, p = 11, K = 40
into Eqs. 4 and 6. The number of evaluated states of SHDP
is

(4368
40

) + 177448F , whereas the result of our method is
4100 + 8200E . Even though E = F , our method evaluates
fewer candidate states. Thus, our method is more efficient in
the construction process.

5 Light field partition

Aberrations are nonlinear functions of the aperture size and
off-axis distance. The errors of Taylor polynomials also rise
with the increase in off-axis distances [1]. Accounting for the
facts, we propose to partition the incident light field at the
sensor along the radial direction and separately construct a
polynomial system for each subregion.

The radius R of the paraxial region is set to αD/2, where
D is the diagonal length of sensor and α is in [0.2, 0.3]. In the
paraxial region, the imaging properties are close to an ideal
optical system, and it allows to use a low-degree polynomial
system. Low-degree polynomials bring additional benefits
that they are less costly to compute. In the off-axis region, it
utilizes high-degree polynomials to better fit nonlinear aber-
rations. To alleviate the discontinuity caused by the hard
boundary, reference ray samples of the paraxial region are
collected in a slightly larger circle with radius (R + ε) (Fig.
3). Similarly, ray samples of the off-axis region are collected
outside of a slightly smaller circle with radius (R − ε). ε is
a small positive number (e.g., 0.15).

6 Line pupil-based rendering

Incident rays to a camera lens can be blocked by interior
stops or the lens barrel. The reduction in survival rays causes

Algorithm 1 Adaptive sparse polynomial construction
Input: t̂ , S, Γ ← 40, L ← 3, depth ← 1, stuck ← f alse
Output: A sparse polynomial system T

1: T ← {t̂}
2: best Error ← Evaluate(T);
3: while true do
4: T ←FindBestNewTerm(F1, F2, T, depth)
5: if Evaluate(T

⋃{T })< best Error then
6: if Size(T) < Γ then
7: T ← T

⋃{T }
8: else
9: (err , x)←FindBestReplace((T\T{x}) ⋃{T })
10: if err > best Error then
11: stuck ← true;
12: else
13: T{x} ← T ; best Error ← err ;
14: if best Error < eps then
15: break;
16: else
17: break;
18: updated ← f alse
19: while true do
20: T

′ ← Simplify(B1, B2, T, depth)
21: if Evaluate(T′) < best Error then
22: T ← T

′; updated ← true;
23: else
24: break;
25: end while
26: if Size(T)== Γ && !updated && stuck then
27: if depth < L then
28: depth + +; stuck ← f alse
29: else
30: break;
31: end while
32: return T

R
paraΦ

off axis–Φ

x

y

x

y

R

Fig. 3 Ray samples of the paraxial region are collected in the dashed
red circle (left), and ray samples of the off-axis region are collected
outside the dashed blue circle (right)

the drop of rendering efficiency. We exploit line pupil-based
sampling to pilot rays through lens elements. Camera lenses
are generally designed to be rotationally symmetric around
the optical axis. Similar to the method [21], we compute line
pupils for line segments along the radial direction outwards.
Line pupils change with the positions on the sensor. In the
paraxial region, we divide the radial line into N segments
with length αD

2N . In the off-axis region, we use a shorter length
αD
4N to better capture the change of valid pupils.
For a line segment a, we fire a ray from a point on a to a

point P on the rear plane (Fig. 4). If the ray can pass the lens
system, P is included in the range of the line pupil. Finally,
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Fig. 4 Configurations of calculating line pupils. The right side shows
line pupils of line segments a and c. (top) A gauss lens (F/4.0) with
hexagon aperture, (bottom) a fisheye lens (F/12.0) with pentagon aper-
ture

the bounding box of points on the rear plane decides the line
pupil. After stopping down the aperture, line pupils should be
updated accordingly while keeping the polynomial system
unchanged. Front pupils can be pre-computed in a similar
approach. A starting plane is firstly selected before the front
lens.

At runtime, a starting point M of a ray is sampled at the
sensor. Depending on its distance to the optical axis, it is
located in a line segment. Then, we rotate its line pupil with
the angle between the horizontal radial line and the radial
line of M . Afterward, the ending point of the ray is sampled
in the rotated line pupil.

While themethod is effective to guide rays through a cam-
era lens, there are also invalid rays because the line pupil is
a loose bounding box. To reduce invalid rays, we add the
aperture constraints of the front lens and the rear lens. Rays
that cannot pass the two lenses are clipped.

6.1 Monte Carlo estimator

In most cases, a camera lens is relatively small compared to
the scene size. It is hard for an arbitrary incoming ray to hit
the front lens. In addition, the incident ray will go through
specular bounces, forming a “SDS” path, which is hard to
be sampled. Therefore, we do not use light tracing from the
light to the sensor. Only a unidirectional polynomial system
is constructed.

In Monte Carlo ray tracing, the radiance of a pixel can
be described as an integral of a measurement contribution
function f = L(s1,−ω0)Ḡ(s1 ↔ s0)We(s0), where L is
the incident radiance to s1, Ḡ(s1 ↔ s0) is an extended
factor and We denotes the visual importance. Path vertices
s0, s1, . . . , l1, l0 are shown in Fig. 5.

The camera path starts from point s0 sampled with a prob-
ability density function p(s0), and a point s′

0 is sampled with
p(s′

0). s
′
0 is an artificial point for assisting the path construc-

1s

0s
2s

2l

1l

0l

fs

0s'
rs

Fig. 5 Camera subpath and light subpath in the context of rendering
with a complex camera lens. s0 is on sensor and s′

0 is on a line pupil.
s0s1 is treated as a virtual edge of the camera subpath

tion. The estimator is defined as

1

N

∑ L(s1,−ω0)Ḡ(s1 ↔ s0)We(s0)

p(s0)p(s1)
. (7)

Here, we transform the areameasure of s1 to the areameasure

of s′
0: p(s1) = p(s′

0) · |Jall | ·
∣∣∣ ∂s1
∂s′0

∣∣∣, where |Jall | is a com-

bined Jacobian for density transformation. Ḡ(s1 ↔ s0) is
defined as:

Ḡ(s1 ↔ s0) = G(s1 ↔ s0) · Pa(s1 ↔ s0) · Tr , (8)

Here, G is a generalized geometric term [22]. Pa denotes a
passage function, it is 1 if the ray can pass the lens system
and 0 otherwise. Tr is the Fresnel transmittance. Finally, the
estimator can be simplified as:

1

N

∑ L · We · Pa · Tr
p(s0)p(s′

0)
· cos θs0 cos θ2s1 cos θs f

cos θ2s′0
· ‖s f − s1‖2

. (9)

The detailed derivation is placed in the supplemental docu-
ment.

In bidirectional path tracing, a path with k edges can
be sampled with k + 2 techniques. Since we omit the
light tracing, the remaining number of techniques is k + 1.
Unbiased results can be obtained as long as samples are cor-
rectly weighted. Each possible path of length k should be
reweighted and the sum of all weights is 1. We use an equal
weight 1

k+1 .

7 Results

7.1 Validation

Our experiments are conducted on a workstation with 2.4
GHz Intel Xeon CPU. The number of terms is limited to
40. A fitted polynomial system is shown in the supplemental
document.

123



Adaptive sparse polynomial regression for camera lens simulation 721

7.1.1 Accuracy and efficiency comparisons

Table 1 shows the fitting statistics of three camera lenses
from [3]. For fair comparisons, each method fits a camera
lens as a single polynomial system. The last row shows our
method with light field partition. The error thresholds for
SHDP and our method are the same. The training data set
contains 3K samples. All models are tested with respect to a
testing data set of 50K samples. Taylor polynomial models
[1] are constructed in an analytic fashion, and its timings
are not included. As seen, our method takes less time to
construct a polynomial system. The accuracy of SHDP and
OUR-single is similar. Note that, our method with light field
partition slightly improves the general accuracy.

The absolute errors for simulating the fisheye-ii lens are
shown in Fig. 6. We build rays by connecting points on the
horizontal axis of sensor to a fixed point on the vertical axis of
rear pupil. The fixed point is at the 1/3 radius position. With
light field partition, our method generally fits polynomials

with high accuracy. Note that it gives lower errors in the
paraxial region.

7.1.2 Number of samples and terms

Table 2 shows the fitting time as to the number of samples.
The fisheye-ii lens is fitted here. All methods use the same
error thresholds. Our method costs less time than others. The
time cost of SHDP goes up quickly, because it involves costly
Choleskydecomposition,whose time cost rises quickly as the
size of matrix increases. Both F-ABFC [18] and our method
tend to use high-degree terms if they are trained with a small
number of samples. Nevertheless, over-fitting is likely to
occur. With the increase in degree, its generalization abil-
ity drops if samples are not enough. As shown in Fig. 7a,
the high-degree polynomials result in higher testing errors.
Given more samples, our method can fit the samples with
low-degree polynomials, which are desirable.

Figure 7b plots the test error and the fitting time as to
different number of terms. The fitting time goes up quickly as

Table 1 Comparisons of the
average sum of squared errors
and fitting time. ‘OUR-single’
fits a camera lens as a single
polynomial system, whereas
‘OUR’ fits two polynomial
systems

Camera Double-gauss Fisheye-ii Canon-anamorphic

Taylor (Deg3) 4.74 × 10−3 3.39 × 10−3 2.30 × 10−3

Taylor (Deg5) 2.61 × 10−4 2.78 × 10−3 1.39 × 10−3

Taylor (Deg7) 1.21 × 10−4 1.98 × 10−4 8.79 × 10−4

SHDP 4.85 × 10−6 138.3h 1.39 × 10−4 180.1h 2.30 × 10−3 183.2h

OUR-single 5.05 × 10−6 24.6h 1.10 × 10−4 26.8h 2.50 × 10−3 30.1h

OUR 3.05 × 10−6 51.7h 5.79 × 10−5 56.3h 6.72 × 10−4 55.6h
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Fig. 6 Comparisons of absolute errors of Taylor polynomial mod-
els from degree 3 to degree 7, SHDP, our model fitted as a whole,
and our model with partitions. (left) x̄ and ū, (middle) ȳ and v̄ and

(right) η. Note that Taylor polynomial models do not contain a transmit-
tance dimension. The black dashed line shows the position of partition
(α = 0.3, R = 5.25)

Table 2 Comparisons of the
execution time and the
maximum degrees of
polynomials (placed in
parentheses). Note the case of
6000 samples of SHDP is not
available

Sample# SHDP F-ABFC OUR-single

400 150.4h (11 per each) 32.5h (12,13,10,11,15) 3.05h (8,10,9,9,14)

2000 162.5h (11 per each) 67.5h (11,10,11,9,13) 19.5h (7,7,5,5,12)

3000 180.1h (11 per each) 88.5h (11,9,10,10,13) 26.8h (5,6,8,5,11)

4000 1028.3h (11 per each) 109.7h (9,8,9,10,11) 32.7h (5,6,5,5,11)

6000 >1000h (–) 143.5h (8,6,9,8,10) 46.3h (5,6,6,5,9)
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Fig. 7 a Testing errors of the polynomials fitted with different number
of samples and b analysis of the test error and fitting time as to the
number of terms
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Fig. 8 Passage rate comparisons of 4 methods: full lens model with
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the increase in term count. 30–40 terms can provide adequate
imaging accuracy and cost moderate time.

7.1.3 Passage rates

We compare the passage rates of rays as to three camera
lenses (Fig. 8). Note that there are no stops in a polynomial
system, we therefore add constraints of the front lens and the
rear lens to SHDP.As shown, the rear pupil-basedmethod [5]
gives low passage rates. The ideal exit pupil-based method
[5] improves the rates, but cannot achieve 100%, because it
is calculated from the paraxial region. Our line pupil-based
method further raises the rates. SHDP provides higher sur-
vival rates. Note that its Newton iteration may exit early
without convergence, thus producing invalid rays.

7.2 Applications in rendering

Figure 9 is shot by a simple biconvex lens. Primary space
Metropolis light transport (PSMLT) [23] is adopted for ren-
dering. It illustrates that our polynomial system can produce
typical Seidel aberrations like distortions and chromatic aber-
rations (see the rims of windows).

In Fig. 10, the same biconvex lens is used for the chess
scene. The focal distance is adjusted via moving the sensor
plane. Bokeh effects are shown at the defocus region. The
color rings of the bokeh patterns depict the chromatic aber-
rations. The shape of the circle of confusion is affected by
the shape of aperture.

Figure 11 compares the sponza scene photographed by a
fisheye-ii lens. The rendering method is bidirectional path
tracing (BPT) [24]. For the Taylor polynomial model, we
apply our Monte Carlo estimator (Sect. 6.1) to it to support
BPT. The Taylor polynomial model leads to an overall blur
image. Note the blur is a kind of systematic noise caused
by insufficient imaging precision, instead of defocus blur.
SHDP produces a noisier image because it spends more time
on iterative adaptation of directions of rays at runtime. At the
image periphery, our method provides clearer texture details.
This is enabled by the strict clipping of invalid rays.

In Fig. 12, the sala scene is imaged with a double-gauss
lens and the stochastic progressive photon mapping method
[25] is used here. Taylor polynomialmodel results in different
distortions at the upper edge of the image. There is noticeable
color contouring (close-up views of Fig. 12a). Both SHDP
and ourmethod produce image profiles close to the reference.
After the same rendering time, ourmethod provides an image
with better visual quality and lower numerical error.

8 Discussion

8.1 Sample count and degree limit

SHDP[3] suggests using10 timesmore samples than the term
count. For an 11-degree polynomial, SHDP considers 4368
candidate terms at each step. 10 times more samples lead to

Fig. 9 (left) Chromatic aberrations (color shift) and distortions can be observed at the rims of windows. (middle) The sensor is moved backward
and the interior frames of windows are blurred. (right) Only 1-degree terms are used and it is similar to the result of a thin lens model
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Fig. 10 Bokeh rendered by our model. (left) Focal distance is set to
1000 mm and the aperture is circular. (right) Focal distance is 4000 mm
and the aperture is triangular

considerable fitting time. In contrast, our method considers
at most 41 terms at each step. Therefore, 410 samples satisfy
the requirements of sample count. Given more than 3000
samples, our method can build a polynomial system within
11 degree. Therefore, provided with enough samples, our
method does not limit the degree.

8.2 Metropolis light transport

PSMLT is efficient to sample difficult paths in Fig. 9. A path
of PSMLT corresponds to a set of random samples. The lens

samples are now used to select points on the line pupil rather
than on the aperture. After a mutation operation, the new
sensor samplesmay correspond to a new line pupil. However,
the subsequentmutated lens samplesmay not produce a point
within the new line pupil and leads to invalid camera rays.
Thus, we use uniform random numbers for sampling on the
line pupil.

8.3 Limitations and future work

Ourmethod approximates a complex camera lens in the sense
of geometrical optics. Lens effects based on physical optics,
like interference and diffraction are currently not supported.
Polynomial models have been demonstrated to be applicable
to render lens flares [1,14]. Our model for general image
formation cannot be directly applied to render lens flares. It
would be interesting to construct specialized polynomials for
lens flare rendering using our algorithm.

Currently, our method does not support zoom lens. The
change of the zoom ratio leads to a new polynomial system.
It can be constructed by replacing terms of a fitted polyno-

Fig. 11 Equal time comparison (2 h) of a the Taylor polynomial model of 3-degree, b SHDP model and c our model. SHDP and our method are
fitted to 4000 samples. The reference image d is rendered with a full lens model for 65 hours

Fig. 12 Equal time comparison (3.5h) of the a Taylor polynomial model of 3-degree, b SHDP model and c our model. The reference image d is
rendered with a full lens model for 61 hours
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mial model. It may save computation time than starting from
scratch.

9 Conclusion

This paper has proposed a novel adaptivemethod to construct
a polynomial system for approximating a complex camera
lens. Our approach starts from low-degree terms and it then
automatically builds necessary high-degree terms. Depend-
ing on the properties of aberrations,we partition the light field
at the sensor along radial direction and handle subregions
separately. Replacement operation is utilized to replace exist-
ing terms with more significant terms. Recursion operation
is exploited to avoid trapping at a local optimum. Besides,
we use line pupil-based method to generate camera rays to
improve the survival rates of rays. Compared with state-
of-the-art methods, our approach behaves more efficient at
building a sparse polynomial system, and it can achieve high
imaging accuracy at the same time.
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