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Abstract In this study, a novel adaptive rendering approach
is proposed to remove Monte Carlo noise while preserving
image details through a feature-based reconstruction. First,
noise in the additional features is removed using a guided
image filter that reduces the impact of noisy features involv-
ing strong motion blur or depth of field. The Sobel operator
is then employed to recognize the geometric structures by
robustly computing a gradient buffer for each feature. Given
the gradient information for high-dimensional features, we
compute the optimal filter parameters using a data-driven
method. Finally, an error analysis is derived through a two-
step smoothing strategy to produce a smooth image and guide
the adaptive sampling process. Experimental results indicate
that our approach outperforms state-of-the-art methods in
terms of visual image quality and numerical error.

Keywords Adaptive sampling and reconstruction · Guided
image filter · Sobel operator · Ray tracing

1 Introduction

Monte Carlo (MC) ray tracing is among the most effective
techniques for producing photorealistic images. This method
computes a complex integral at each pixel by randomly sam-
pling the multidimensional integration domain. However,
unless an excessive number of ray samples is distributed,
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MC renderings converge slowly and suffer from noise arti-
facts, i.e., variance at low sampling rates. To gain efficiency,
a large number of variance reduction approaches have been
proposed, of which adaptive sampling and reconstruction
methods [1–3] have shown their effectiveness at removing
noise while preserving details.

Adaptive sampling and reconstruction methods typically
use a small number of samples to quickly render a noisy
image and filter it through post-processing. Furthermore, the
filtered result can be used as feedback to direct the distri-
bution of additional ray samples. For example, Rousselle et
al. [3] greedily minimized the relative mean squared error
(rMSE) by selecting suitable per pixel filters. However, this
method is limited to symmetric reconstruction kernels (e.g.,
Gaussian filters). Recently, the most successful approaches
considered additional features such as depths, textures, and
normals to determine the filter weights. Because these fea-
tures are typically less noisy relative to pixel colors and
are highly correlated with scene details, filters using fea-
tures (e.g., cross-bilateral filters and cross-non-local-means
filters) significantly improve image quality. As a result, many
approaches apply novel theories such as weighted local
regression [4], machine learning approaches [5], and Stein’s
unbiased risk estimator (SURE) [1] to estimate per pixel
errors and then select the ideal filter parameters. However,
because the optimal parameters are often spatially variable,
robust selection is challenging. Another drawback of these
methods involves inaccurate and noisy error estimates at
low sampling rates, which reduces the robustness of filter
selection. Moreover, the features can also be rather noisy,
especially when there are complex motions, textures, and
geometries. These noisy features are prone to blurring image
details that are not well represented by features. Recently,
to deal with the problem of spatially varying parameters,
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Bauszat et al. [6] proposed a method to construct dense error
prediction from a small set of sparse estimates.

Based on the above observations, we propose a novel
feature-based approach to handle a wide variety of MC ren-
dering effects. One of our main contributions is to extend an
effective image-denoising filter (guided image filter) [7] and
use it to prefilter the feature images. To remove the noise in
features, the Sobel operator is first employed to compute a
gradient image that typically has edges consistent with the
ground truth. The feature images are then prefiltered through
a guided image filter with gradient image as the guidance
image. Furthermore, we also use the gradient information to
recognize spike pixels, thereby alleviating the influence of
spike noise. To select optimal filter parameters, the spatial
and feature parameters are computed in two separate steps.
First, the spatial parameter is computed using a simplified
parametric error estimation that fits the parametric curves for
bias and variance, respectively. This procedure enables our
method to robustly and consistently select the filter parame-
ter. Given the selected spatial parameter, we then evaluate a
few candidate filters using different feature parameters and
compute their weighted average using a two-step smoothing
strategy. Experimental results showed that our newmethod is
superior to previous methods on a wide variety of rendering
effects.

2 Related works

Recent works involving adaptive sampling and reconstruc-
tion achieved impressive results; however, the primary goal
remains the same: removing MC noise while faithfully pre-
serving image details. These works can be classified into two
categories: multidimensional and image-space rendering.

Multidimensional space rendering Kajiya [8] proposed
a method to allocate high-dimensional samples using kd-
trees to reconstruct the outputs. Numerous approaches have
since been presented to operate in a multidimensional space.
For example, Hachisuka et al. [9] used a structure tensor
to perform an anisotropic reconstruction, which exhibited
poor effectiveness as the dimensions increased. Durand et
al. [10] described how the frequency content of radiance was
altered by phenomena such as transport, occlusion, and shad-
ing. Based on the work of Durand et al. [10], many methods
were tailored to improve image quality for specific effects
such as depth of field [11], motion blur [12], soft shadow
[13], and ambient occlusions [14]. Belcour et al. [15] pre-
sented a five-dimensional frequency analysis of a temporal
light field to support depth of field and motion blur. Lehtinen
et al. [16] described a reconstruction technique using depth
and motion information to handle a wide variety of specific
effects. Moreover, they also reused ray samples to produce

better results for indirect illuminations [17]. Kettunen et al.
[18] proposed frequency analysis that compares theMC sam-
pling of gradients followed by Poisson reconstruction with
traditional MC sampling. They showed that it is beneficial
to directly estimate image gradients with correlated samples.
Manzi et al. [19] reconstructed images by solving a screened
Poisson problem leveraging feature patches to regularize the
solution. Sen et al. [20] proposed an interesting method to
ray trace only a subset of pixels followed by the determina-
tion of missing pixels using a compressed sensing method,
which failed at low sampling rates. Liu et al. [21] coarsely
sampled the entiremultidimensional space and used a kd-tree
to refine the space. The main drawback of these multidimen-
sionalmethods is that they typically only support a limited set
of distributed effects and tend to be restricted by the so-called
curse of dimensionality.

Image-space rendering Since Mitchell [22] laid the foun-
dation for image-space rendering, this method has received
additional attention due to its simplicity as well as efficiency.
A common strategy is to render a noisy imagewith a few sam-
ples and then denoise it using a post process. In this case,
many algorithms are inspired by the denoising techniques
used by the image-processing community, where powerful
filters such as cross-bilateral filters [23], non-local-means
filters [24,25], and wavelet shrinkage [26] are employed
to remove noise. For example, Rousselle et al.’s algorithm
[3] is based on adaptive bandwidth selection with isotropic
Gaussian filters. Kalantari et al. [27] proposed a method that
enabled the use of any spatially invariant image-denoising
techniques to denoise MC renderings.

Recently, approaches leveraging additional features (e.g.,
normals, textures, depths, world positions) have become
popular. Their main purpose is to select the optimal filter
parameters to enable a trade-off between noise reduction and
detail fidelity. Li et al. [1] introduced the use of SURE to
select the suitable spatial parameter from a predefined can-
didate set. Unfortunately, SURE estimates can be unreliable
at low sampling rates, leading to suboptimal results. Rous-
selle et al. [25] split the samples into two buffers, with the
difference between the buffers treated as an estimated error.
Sen et al. [28] calculated the statistical dependency between
the parameters and their outputs, and used this information
to reduce the importance of samples affected by noise. Rous-
selle et al. [2] evaluated three candidate filters using different
parameters and computed their weighted average for output.
Bauszat et al. [29] used edge-aware filtering in the sample
space to reduce noise in the presence of depth-of-field effects
at low sampling rates. Liu et al. [30,31] used polynomial
reconstruction to produce smooth image details. Moon et al.
[32] used a virtual flash image as an edge-stopping function
to recognize homogeneous pixels and preserve details.
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Most recently, Moon et al. [4] employed weighted local
regression to compute the optimal filter parameters on a
reduced feature space; however, this method may underesti-
mate local dimensions with truncated singular value decom-
position (TSVD), leading to overblurred details. Kalantari et
al. [5] trained a neural network by analyzing the relationship
between the ideal parameters and the scene data, followed by
employing the network to estimate the appropriate parame-
ters. Bitterli et al. [33] proposed prefiltering features with
an NL-means filter. They also employed a first-order model
with a nonlinear regression kernel to reconstruct images. To
approximate the incident indirect illumination, Bauszat et
al. [34] filtered the noisy image using a guided image fil-
ter with the depth and normal map as the guidance image.
Delbracio et al. [35] computed a ray histogram to determine
whether two pixels can share rays. To remove noise while
preserving high-frequency edges, Moon et al. [36] built sev-
eral linear models using different prediction windows, and
the window returning the smallest error was finally chosen.
Most recently, Moon et al. [37] noticed that high-order func-
tions may produce better images than low-order functions.
In this case, they locally selected the polynomial function
order in place of filter bandwidth to improve image quality.
Despite the impressive results of these feature-based meth-
ods, their error estimates are noisy at low sampling rates.
Therefore, it remains challenging to robustly select optimal
filter parameters in complex cases. Zwicker et al. [38] pro-
vided a detailed description of recent advances in adaptive
rendering approaches.

3 Overview

Feature-based filtering methods are effective at removing
noise, especially for scenes with clear structural details. Sim-
ilar to priormethods,we compute thefiltered image ̂C at pixel
i as a weighted average of its neighborhood N (i) centered at
i :

̂Ci =
∑

j∈N (i) di, jC j
∑

j∈N (i) di, j
(1)

where di, j is the weight term between pixel i and j , andC j is
the sample mean of pixel j . We compute the weight term by
employing spatial, color and feature components as follows:

di, j = exp

(

−||si − s j ||2
2α2

i

)

exp

(

−D(Ci ,C j )

2β2
i

)

m
∏

k=1

exp

(

−D f ( f i,k, f j,k)

2γ 2
i,k

)

(2)

where si and f i,k denote the screen position and the sample
mean of the kth feature at pixel i , respectively.α2

i ,β
2
i , and γ 2

i,k
are the variances for spatial, color, and the kth feature terms,
respectively. Since these parameters control the bandwidths
of the filter, the main difference between previous methods
is how they select the optimal values for these parameters.
Here, we define the cross-bilateral filtering process as: ̂C =
Fil(C, α, β, γ ) where the noisy input C is filtered using a
cross-bilateral filter with parameters α, β, and γ .

To enhance the effectiveness of noisy features, ourmethod
first filters them with a guided image filter (Sect. 4), which
uses the Sobel operator to compute a gradient image as the
guidance image. The main intuition of our gradient image is
to extract fine details presented by different features.We then
computeαi and γi,k separately on a per pixel basis. Forαi , we
use a parametric curve fitting to consistently produce values
(Sect. 5.1). γi,k is then estimated as a weighted average of a
predefined candidate set (Sect. 5.2), which creates a trade-
off between noise reduction and detail fidelity. Finally, to
suppress outliers that can lead to spike noise, a two-radius
strategy is proposed to reject spike pixels and down-weight
them to remove spike noise (Sect. 6).

4 Feature prefiltering

In this section, we describe our algorithm for prefiltering fea-
ture images using a guided image filter [7], which exhibits a
gradient-preserving characteristic and can be regarded as a
special case of weighted linear regression. The key assump-
tion is that each pixel in a local window w j centered at pixel
j is a linear transform of the same window in a guidance
image I :

Fi = a j Ii + b j ,∀i ∈ w j (3)

where a j and b j are constant linear coefficients in w j . Typi-
cally, guided image filter requires a regularization parameter
to preventa j frombeing too large, andwe set it to 0.001 for all
tested scenes. After computing these parameters using linear
regression, we average all coefficients for each overlapping
window at each pixel. Here, the guided image filtering is
summarized as: F = GUID(C, I ), which describes the input
image C being filtered using a guided image filter, with I as
the guidance image.

To filter the initial features using a guided image filter, a
robust guidance image is needed. Instead of using the noisy
features, we utilize the Sobel operator to construct a gradient
image. Compared with the input features, our gradient image
remains consistent with the ground truth and can extract fine
details.

The Sobel operator is a discrete differentiation operator
that is commonly used in computer vision to detect edges.
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Technically, it convolves the input image with a small and
separable filter kernel to calculate two approximations of
derivatives: one for horizontal changes and another for verti-
cal changes. In this paper, the gradient image gra is computed
as the maximum of gradient images grak for each feature as
follows:

grak =
√

(Gx ∗ f k)2 + (Gy ∗ f k)2

gra = max{grak} (4)

where f k is the kth input feature image constructed by the
sample mean, and Gx and Gy are the horizontal and vertical
Sobel kernels, respectively.

We observe that different features may present different
geometric edges. For example, while the input depth image
does not show clean details on the window of the “San
Miguel” in Fig. 1, our method considers other features to
obtain these details. As a result, we use three features (i.e.,
textures, normals, and depths) in order to extract fine details.

Figure 1 shows the input features (first row of the insets)
and the related gradient images (second row of the insets).
Note that only one feature image is shown for each bench-
mark. In practice, however, we consider all three features
to compute the gradient image. Pay attention to the motion
blurred and defocused regions of the first two benchmarks.
It is obvious that our gradient image contains more details
than the input feature images, even with a small number of
ray samples. As a result, we prefilter the noisy features as
follows:

̂fk = GUID( f k, gra) (5)

where ̂fk is the kth filtered feature image. In our implemen-
tation, the window size of guided image filter is set to 7.

The result of our feature prefiltering is shown in Fig. 2.
As shown in the figure, the initial normal image is rather
noisy in areas with strong depth of field. The noisy features
tend to degrade image details without denoising. Using our
guided image filter, as shown in the figure, noise was effec-
tively removed while fine feature details in the area of focus
were preserved. The guided image filter was also used in
past work [34] to approximate incident indirect illumination.

Fig. 1 The gradient image of our method

Fig. 2 Noise removal for features. The initial features are noisy at
regions with strong depth of field. Our method removes the noise while
preserving feature details in focused areas

Nevertheless, the authors used the initial normal and depth
map to construct a guidance image, which contained a lot
of noise for specific effects. Our method, on the other hand,
prefilters them to suppress the impact of noisy features.

5 Parameter selection

As shown in Eq. 2, the main challenge is how to select opti-
mal filter parameters. Given the filtered features, we select
them on a per pixel basis. The spatial parameter is computed
through a parametric curve fitting, which enables us to pro-
duce consecutive results. For the feature parameters, they are
computed as a weighted average of the candidate filters using
a two-step smoothing strategy to make a trade-off between
noise reduction and detail fidelity.

5.1 Spatial parameter

Moon et al. [4] decomposed numerical error into bias and
variance terms using the local regression literature [39], and
then estimated the terms through a parametric curve fitting
procedure. However, their method relies upon a reduced fea-
ture space, where the estimated value is a scaling factor
shared across all feature types. As a result, the selected spa-
tial parameter may be affected by other noisy features. In this
case, we only employ parametric curve fitting to compute the
spatial parameter in a local space, allowing us to eliminate
the influence of other features.

At the first step, we filter the initial image using a set of
test spatial values αt . In this step, the feature parameters are
set to constant values. This returns a paired list of αt and the
corresponding biases, as well as variances. As mentioned
in the previous work [4], the bias and variance terms con-
tain the following asymptotic parametric functions of given
bandwidth αt , respectively:

bias(αt , i) = b0 + b1α
2
t

var(αt , i) = 1

n(i)

(

v0 + v1

α2
t

)

(6)
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Fig. 3 Visualization of the spatial scale selection map. Our method
enables a trade-off between noise reduction and detail fidelity

where b0 and b1 are the curve parameters for bias, v0 and v1
are those for variance, and n(i) denotes the current num-
ber of samples at pixel i . The bias and variance terms

can be estimated as: bias(αt , i) =
∑

j∈N (i) di, j,c j
∑

j∈N (i) di, j
− ci and

var(αt , i) = ∑

j∈N (i)(di, j )
2var j , respectively. Here, di, j

represents the filter weight between i and j using αt , and
var j is the variance of the sample mean at pixel j . c j is
the filtered pixel color from a box filter, which is typically
considered as unbiased estimation of the ground truth.

After each αt is tested, the four curve parameters (i.e., b0,
b1, v0, and v1 ) can be computed by ordinary least squares.
The optimal spatial parameter at pixel i is then computed

as αopt = v1
2b21n(i)

1
6 based on ∂(bias2+var)

∂αt
= 0. The main

difference between our metric and WLR in Eq. 6 is that
WLR computes a scaling factor shared across spatial and
feature spaces. Our method, however, restricts the result to
be determined only by spatial variations, and thus returns
a robust spatial parameter without the influence of noisy
features.

Figure 3 shows our scale selection map for the spatial
parameter. This figure compares our result with those from
two global cross-bilateral kernels, where the same parame-
ter is used at each pixel. The results indicate that the small
parameter (scale=1) is unable to remove noise, while a larger
parameter (scale=8) tends to over smooth images. Based on
our local parametric analysis, our results adaptively select
spatial parameters and preserve fine details while success-
fully removing noise.

To compute di, j , the function D f measures the feature
distance between two pixels. Here, we use the gradient infor-
mation to suppress the influence of noisy features.

D f ( f i,k, f j,k) = | ̂fi,k − ̂f j,k |2
σ 2
i,k + σ 2

j,k + min
(

grai2, 0.01
) (7)

Fig. 4 Filtering results using gradient information. Our distance func-
tionuses the gradient information to compute thefilterweights, resulting
in smoother details

where σ 2
i,k and σ 2

j,k are sample variances of the kth feature at

pixel i and j , respectively. ̂fi,k denotes the kth filtered feature
at pixel i , and grai represents the value of gra at pixel i . Our
metric controls the residual variance of the filtered feature by
considering the gradient magnitude. Thus, for a pixel with
strong motion blur or depth of field, a larger filter weight can
be returned even when the features are far apart. Rousselle et
al. [2] proposed a similar metric to reduce the impact of noisy
features, which requires a suitable user-defined parameter to
control the sensitivity of the filter to feature differences. Our
metric returns smaller distanceswhen the estimated gradients
are high. As a result, it tends to produce smoother results
(Fig. 4).

5.2 Feature parameters

To compute optimal feature parameters, a straightforward
strategy involves fitting the parametric curve to each feature.
However, large amounts of time and memory are consumed
as more features are considered. To solve this problem, we
adopt a common strategy to select a suitable parameter with
the lowest error from a predefined candidate set. This strat-
egy, unfortunately, tends to produce noisy error estimates
that may lead to visual artifacts in the form of seams. In this
case, we smooth the error estimates and compute a weighted
average of the candidate filters for output. Specifically, our
metric measures the varying importance of different features
and then estimates per pixel errors.

Wedefine l candidate feature parameters as s = {s1, s2..sl},
where each value is employed to compute its related filtered
image ĉ j = Fil(C, αopt , 0, s j ),∀s j ∈ s. Note that the opti-
mal spatial parameter αopt is used at each pixel in this part.
To estimate the error erri, j introduced with s j at pixel i , a
simple error estimation metric is described as follows.

First, the initial image is filtered using three guided image
filters, with each filter using the normal, texture, or depth
image as the guidance image.

feak = GUID(C, ̂fk) (8)

where feak denotes the filtered image of using ̂fk as the guid-
ance image.
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Fig. 5 a Feature choice and b sampling density map. Our method
considers the varying importance of different features to estimate per
pixel errors

Then we measure the difference λi,k between feai,k and ci
at pixel i as:

λi,k = |feai,k − ci |
ci

refi = {feai,k |min(λi,k)} (9)

where ci is the observed pixel value obtained from a box
filter, and feai,k is the value of feak at pixel i . Typically, ci
is considered as unbiased estimation of the ground truth [3].
As a result, if the difference is small, we consider the given
feature to contain more scene details. In this case, the single
image feak that returns the smallest difference at each pixel
is saved to construct a reference image ref , which is used to
estimate per pixel errors:

erri, j = |̂ci, j − refi|2
refi2 + ε

(10)

where ĉi, j is the value of ĉ j at pixel i , and ε is a small num-
ber to prevent division by zero. Figure 5a shows the feature
choice involved in our method.

As described above, selecting the candidate filter with the
lowest erri, j can lead to seams due to filter changes. More-
over, the initial error estimates can be very noisy and need to
be filtered with a large spatial kernel, which tends to intro-
duce bias in error estimates. In these cases, we present a
two-step smoothing strategy to smooth the initial error esti-
mates, which is similar to prior work [2].

First, the initial error estimates are filtered using a small
guided image filter with the initial error estimates as the guid-
ance image, resulting in l binarymaps. In the j th binarymap,
pixel i equals to one if erri, j has the smallest error. Second,
these binary maps are filtered with a larger guided image
filter kernel, which helps suppress outliers (Sect. 7). The fil-
tered results are used as weight terms to compute a weighted
average of the predefined candidates:

outi =
∑l

j=1 weii, j ĉi, j
∑l

j=1 weii, j
(11)

where weii, j is the filtered error estimate using the two-step
smoothing strategy, and out is our final reconstructed image.
This smoothing step of error estimates allows our method to
avoid seams and produce consistent details.

6 Extensions

6.1 Removing spike noise

MC renderings may contain spike pixels that have radiance
values much larger than their neighbors. Intuitively, spike
noise can be removed by using a large filter, which tends to
over smooth details and introduce bias. In this case, we use
the gradient information to recognize spike pixels and reduce
their weight terms. First, the mean and standard deviation of
each pixel in the initial image are computed in a localwindow
of size 5 × 5. The spike pixels are then recognized as:

spii = |meani − Ci | − max(grai, sdi ) (12)

where meani and sdi are the mean and standard deviation at
pixel i in C , respectively. If spii > 0, pixel i is labeled as a
spike pixel.

A similar method was proposed by Kalantari et al. [5].
They replaced the filtered value of a spike pixel with its
median window color. The major difference between these
two methods is that we select the suitable parameters by
regression on the bias-variance trade-off, and LBF does it
using a trained mapping between the local statistics and opti-
mal parameters. For our method, however, we found that
residual splotches may be produced if we directly used the
median block color (as shown in Fig. 6). In this case, we
used a two-radius strategy to further remove spike noise. We
define pixel i (spii > 0) as the first spike pixel, with its
neighbors in a window of size 10 × 10 defined as the sec-
ond spike pixels. As a result, the influence of spike noise
is divided into two parts. The first part is derived from the
first spike pixels, and their filter weights are set to zero. The
second part is derived from the second spike pixels, which
may also have high dynamic range; therefore, we set their
filter weights to half of the original values. Figure 6 demon-
strates our spike removal results. It indicates that our method
can robustly recognize spike pixels and successfully remove
spike noise using the two-radius strategy.

6.2 Adaptive sampling

We adopt a common strategy [3] to distribute additional ray
samples to high error areas. During the initial pass, a small
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Fig. 6 Recognizing spike pixels. Our method recognizes spike pixels
in the input image and removes the noise by reducing their filter weights

number of ray samples (e.g., four samples per pixel) are
distributed uniformly. In subsequent iterations, the available
samples are distributed based on the following metric:

Sami = |outi − ci |2 + vari
out2i + ε

(13)

where ε is a small number used to prevent division by zero
(set to 0.001), and outi is the filtered output in the prior iter-
ation. Our metric allocates more samples to darker areas by
considering the squared luminance of the reconstructed pixel
color. As a result, pixel i obtains dSami

∑

j Sam j
samples in the next

iteration if there are d samples available. Figure 5b shows
the sampling density map and demonstrates that samples are
mainly distributed to regions with discontinuities and depth
of field.

7 Algorithm

The pipeline associated with our method is summarized in
Algorithm 1. Given the noisy color input C , initial features
f k and their related variances σ 2

k , our algorithm produces the
final image out . The gradient image gra is first computed by
applying a Sobel operator to each feature. The initial features
are then filtered using a guided image filter with gra as the
guidance image. In this step, spike pixels are also recognized
using Eq. 12.

In the second step, five test spatial parameters (αt =
{0.1, 1, 2, 4, 8}) are used to filter the input image. In this
step, the feature parameters are set to constant values (γ =
{0.2, 0.3, 0.4}). Our cross-bilateral filter produces five fil-
tered images Ft , as well as the related biasmaps bias(αt ) and
variance maps var(αt ). We then fit the parametric curves for
bias (Bias f i t) and variance (Var f i t) at each pixel, where
the calculated coefficients are used to estimate the optimal
spatial parameter αopt .

Algorithm 1 Removing Monte Carlo Noise Using a Sobel
Operator and a Guided Image Filter

Require: Noisy color input C , Noisy feature input f k with sample
variance σ 2

k , current sample number n, output using a box filter c
Ensure: reconstructed image out
1: function Feature- prefilter( f k ,Gx ,Gy)

2: grak =
√

(Gx ∗ f k)2 + (Gy ∗ f k)2

3: gra = max{grak}
4: ̂fk = GUID( f k , gra)
5: end function
6: function Spatial parameter(C ,̂fk ,gra,n,αt ,γ )
7: for t = 1 → 5 do
8: {Ft , bias(αt ), var(αt )} = Fil(C, αt , 0, γ )

9: end for
10: {b0, b1} = Bias f i t (bias(αt ), αt )

11: {v0, v1} = Var f i t (var(αt ), αt )

12: αopt = v1
2b21n(i)

1
6

13: end function
14: function Feature parameters(C ,gra,αopt ,̂fk ,s,ε,c)
15: for k = 1 → 3 do
16: feak = GUID(C, ̂fk)

17: λi,k = |feai,k−ci |
ci

18: end for
19: refi = {feai,k |min(λi,k)}
20: for j = 1 → l do
21: ĉ j = Fil(C, αopt , 0, s j )

22: erri, j = |̂ci, j−refi |2
refi2+ε

23: end for
24: end function
25: function Two- step- smoothing(C ,gra,αopt ,̂fk ,erri, j )
26: for j = 1 → l do
27: err j = GUID(err j , err j )
28: end for
29: binaryi, j = min(erri, j )?1 : 0
30: for j = 1 → l do
31: wei j = GUID(binary j , binary j )
32: end for

33: outi =
∑l

j=1 weii, j ĉi, j
∑l

j=1 weii, j
34: end function

In the third step, the importance of three features (tex-
tures, normals and depths) is measured by filtering the initial
image using the filtered features as guidance images. At each
pixel, the filtered result using the kth feature is inserted into
a reference image ref if it has the smallest difference term.
Given a predefined candidate set s = {0.25, 0.6, 0.8}, ref is
used to estimate per pixel errors associated with these candi-
date parameters. We then smooth the error estimates using a
two-step strategy. First, the error estimates are filtered using
a small guided image filter kernel (|w| = 3 × 3) to obtain
3 binary selection maps. These binary maps are then filtered
using a larger guided image filter kernel (|w| = 7 × 7) to
return theweight termsweii, j , which are finally used to com-
pute a weighted average for output.
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Fig. 7 Prefiltering results of our method and NL-means filter

8 Results and discussion

For all experiments, we used an Intel Core-i7-3630QM with
8 GB RAM and a GeForce GT 650M GPU. The proposed
method was integrated as an extension of PBRT [40], where
the filters (cross-bilateral filter and guided image filter) and
gradient computing process are written in CUDA to enable
GPU acceleration.

The results of our method were compared with those of
four state-of-the-art methods: SURE-based filtering (SBF)
[1], the robust denoising method (RDFC) [2], weighted local
regression (WLR) [4], and machine learning (LBF) [5].
These methods were implemented by code provided by the
corresponding authors, and all parameters were set to the
default values suggested in the original papers. Since SBF is
a CPU-based method, it typically needs much longer to filter
images. All other methods were implemented in CUDA 7.5.
To measure the numerical error, the rMSE [3] was computed
as (img − gt)2/(gt2 + ε), where img and gt are the filtered
and ground truth pixel values, respectively. ε = 0.01 was

set to a small value to prevent division by zero. Furthermore,
our method was compared against well-known benchmarks
with a wide range of effects, materials, and geometries. All
images were produced at a resolution of 800 × 800 pixels.

8.1 Scenes

Amajor contribution of ourmethod is the prefiltering process
to handle noisy features. Figure 7 compares our method with
RDFC, which adopts a non-local means filter to denoise fea-
tures. The first two rows of insets were from a motion blur
scene shown in Fig. 8, and both methods used four sam-
ples per pixel to produce the initial features. It is obvious
that ourmethod produced smoother details inmotion-blurred
regions. We found that our method outperformed non-local
means filter, especially, at low sampling rates. As more sam-
ples were distributed (such as eight or 16 samples per pixel),
the noise contained in the features was reduced greatly, and
both methods returned visually pleasing prefiltering results.
Figure 8 further compares the reconstructed images of these
two methods. RDFC produced overblurred details in the
motion-blurred regions, whereas our method was closer to
the reference image.

Typically, the feature prefiltering process is not trivial
because additional features for it can not be easily obtained.
Hence, past methods typically used well-known image fil-
ters, such as non-local means filter [2,33], without utilizing
additional features. At a high level, our gradient image can
be considered an additional feature for this prefiltering. As
a result, the proposed prefiltering process can be integrated
into existing frameworks to serve as an alternative. Another
prefiltering strategy was proposed by Moon et al. [4], which
involved the construction of a reduced feature space using
TSVD. This method filters out small singular values that are
often due to corruption from noise. However, local dimen-
sions estimated by TSVD can be underestimated at low
sampling rates, thereby producing overblurred details.

Fig. 8 Comparison of our method with RDFC. Both methods prefilter the noisy features to handle specific distributed effects. RDFC overblurred
details in the motion-blurred regions. Our method returned clean details
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Fig. 9 Prefiltering results with varying Sobel operator sizes. Our gradient image is not heavily dependent on the Sobel operator size

The feature images are prefiltered using a Sobel opera-
tor, which has an important influence on the gradient image.
There is a bias-variance trade-off for this prefiltering related
to the size of the Sobel operator. If a large window (e.g., a
7 × 7 Sobel operator) is used, the estimated gradients are
smoother. On the other hand, small window sizes tend to
present more feature details. We compared the prefiltering
results with varying Sobel sizes in Fig. 9. In this figure,
three window sizes were considered (i.e., 3 × 3, 5 × 5,
and 7 × 7). The insets (a)–(c) show the gradient images,
and (d)–(f) show the related filtered features as well as the
reconstructed images. As expected, the gradient images were
smoother as the Sobel operator size increased. However, the
changes were very slight such that the filtered results did not
vary greatly. This was mainly because the input features typ-
ically present relatively clear edges. The gradient image was
hence not heavily dependent on Sobel operator size, which
became more obvious as the number of samples increased.
As a result, we adopted the size of 5×5 for all tested scenes,
since it presented a good trade-off between quality and per-
formance.

It is worth noting that gradient information has been
widely used to improve image quality. Manzi et al. [19], for
instance, sampled finite difference gradients between hori-
zontal and vertical neighboring pixels in addition to pixel
values. However, the finite difference images may still con-
tain a lot of noise at low sampling rates.When they solved the
Screened Poisson reconstruction, the noise in the finite differ-
ence images impact the final results greatly. Our method, on
the other hand, considers feature images that are less noisy
to save gradient information. Moreover, the above method
also employs TSVD to prefilter the initial features, as does
WLR. In this case, local dimensions estimated by the TSVD

can be underestimated, especially with a small number of
samples. It thus tends to produce overblurred details at areas
with noisy geometries. A potential solution is using our pre-
filtered features to construct the regularization constraints,
which push each local path in the final image to be similar
to the corresponding patches in the filtered features. This is
left for our future work.

Figure 10 shows the “SANMINGUEL” scene containing
complex geometries. All the images in this figure were ren-
dered using 16 samples per pixel. MC produced substantial
noise, while SBF used the features and typically performed
better than MC. However, numerous spike noise remained,
because SBF cannot recognize spike pixels. Additionally,
noticeable artifacts were generated on the walls where the
features were not helpful. In this case, SBF failed to select
optimal parameters due to its inaccurate error estimates at low
sampling rates. WLR did not weight the features appropri-
ately, and, thus, produced significant splotches on the walls.
Although both SBF and WLR considered the additional
features, they did not return appropriate filter weights, result-
ing in residual noise. Moreover, WLR tended to overblur
images in regionswhere the varianceswere exceedingly high.
Compared with SBF and WLR, our method suppressed the
influence of spike pixels and consistently selected the opti-
mal parameters. As a result, ourmethod removed the noise on
both the wall and the window while preserving fine details.
Notably, ours was the onlymethod capable of providing clear
structural details on the window.

Figure 11 demonstrates two challenging benchmarks. The
first one (“DRAGON”) contains multiple types of media.
Again, SBF presented a lot of noise even when it used fea-
ture information. Because it did not optimize the feature
parameters, SBF failed to smooth pixels in proximity to noisy
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Fig. 10 Comparison of our method with prior methods. MC typically
produced abundant noise at low sampling rates. SBF failed to select
the optimal parameter due to noisy error estimates. WLR was unable to

remove noise along the walls and generated residual noise. Our method
outperformed these methods and returned a relatively noise-free result

Fig. 11 An additional comparison of our method with prior methods. None of the previous methods could remove noise in areas with strong depth
of field. Our method resulted in high-quality renderings closer to the reference image

features. WLR performed better than SBF; however, WLR
still overblurred details. Additionally, WLR was not able to
properly remove noise in the background areas, especially
on the floors. Notably, neither SBF nor WLR removed the
noise on the floors without overblurring details or introduc-
ing noise artifacts. In this scene, our method maintained the
clarity of details on the floors and removed noisewithout over
smoothing details. The second scene(“CHESS”) has strong
depth of field. In this case, none of other methods effectively
removed the noise in out-of-focus regions, because the fea-
tures are typically noisy. However, our method removed the
noise in features by combining the use of a guided image
filter with gradient information, which generated noise-free
features and yielded better details. Furthermore, the results
using our method were closer to the ground truth.

MC renderings may exhibit high dynamic range, and pix-
els with radiance much larger than those of their neighbors
are defined as spike pixels (i.e., outliers). Previous meth-
ods typically exhibited difficulty in removing spike noise,
because these pixels cannot be spread robustly. For example,
SBF did not distribute the energy of the outliers and resulted
in a significant amount of spike noise (Fig. 12). We can mit-
igate this problem by using a larger filter size; however, this
is prone to the introduction of bias and the overblurring of
images. Here, we recognized these pixels by using gradient
information that is free of spike noise, and removed the spike
noise using a two-radius strategy. In Fig. 12, we compare the
results of spike removal with those of WLR and LBF. WLR
suppressed the spike noise by dividing the computed weights
of samples by the variance of the sample mean; however, it
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Fig. 12 Comparison of spike noise removal. Results indicate that our
method removed a significant amount of spike noise and produced
smooth details

still exhibited low-frequency noise and splotches on the table
(first row of the insets). LBF replaced the colors of spike pix-
els with the median block color. In this scene, we found that
both our method and LBF removed spike noise without pro-
ducing splotches. However, LBF tended to be aggressive in
its filtering, resulting in a loss of some local details (sec-
ond and third rows of the insets). Our two-radius strategy, on
the other hand, down-weighted the spike pixels to robustly
perform the reconstruction step. Unfortunately, our method
introduced energy loss in the final image similar to prior
methods, leading to a relatively higher numerical error. To
solve this problem, a better way of restoring and redistribut-
ing the lost energy is left for our future research (Moon et al.
[37]).

The rMSEs of rendered images (Figs. 8, 10 and 11) show
that our method consistently generated lower rMSEs as com-
pared with SBF and WLR at the same sampling rates. SBF
selected the spatial parameter using SURE,which ignores the
influence of feature parameters. Moreover, SBF produced
inaccurate error estimates at low sampling rates, resulting
in large numerical errors. In Fig. 10, the rMSE reduction
associated with SBF was poor, despite its producing rela-
tively smooth details. Specifically, this method was unable to
remove spike noise. Compared with SBF, WLR performed
better due to its use of error analysis in the reduced fea-
ture space. In practice, we found that our method produced
similar rMSE as those generated with WLR, which is likely
due to both methods using parametric curve fitting. How-
ever, WLR underestimates local dimensions according to the
TSVD procedure, leading to overblurred details. Addition-
ally, its shared bandwidth may be affected by noisy features,
thereby producing suboptimal results. Our method, however,
computes spatial and feature parameters using two sepa-
rate steps, thereby eliminating the influence of noise on the
overall result. We also provide a convergence plot for the

Fig. 13 Convergence plot for our method and previous methods

Fig. 14 Failure case of our method. Our method removes significant
noise in the motion-blurred region. However, in the motionless region,
our method fails to select optimal parameters at low sampling rates and
overblurs image details

“DRAGON” scene in Fig. 13, which shows that our method
yields lower numerical errors.

8.2 Limitations

A main limitation of our method is that the gradient infor-
mation may be not efficient at recognizing fine structures. As
a result, features can be over blurred, especially at regions
where the Sobel operator fails to recognize fine details. As
shown in Fig. 14, results using our method were visually bet-
ter in regions containing strong motion blur, but overblurred
texture details on the ground. The impact of this problem
may be reduced by using a small guided image filter, but
this can result in failure to denoise features. Furthermore,
we computed the optimal feature parameters as a weighted
average of the predefined candidates. The error analysis was
built on a perceptual metric that might have been inaccurate.
Finally, our spike removal method introduced energy loss to
the reconstructed images. To solve this problem, we plan to
restore and redistribute the lost energy in future work.

9 Conclusions and future work

A novel feature-based adaptive rendering method was pro-
posed in this study to efficiently handle a wide variety of
rendering effects. Our method first recognizes geometric
structures by employing the Sobel operator on features to
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return a gradient image, which maintains clarity along the
edges. The input features are then prefiltered using a guided
image filter, with the gradient image used as the guidance
image. At a high level, the proposed prefiltering method can
be used as a plus for existing approaches. Our method com-
putes the spatial parameter through parametric curve fitting
on a per pixel basis, which enables us to eliminate the influ-
ence of noisy features. We then predefine a set of candidates
as feature parameters and compute their weighted average
for output using a two-step smoothing strategy. Experimen-
tal results demonstrated the robustness and efficiency of our
method on a set of challenging benchmarks, and showed that
it improves both visual image quality and numerical error.

Our future work will extend the guided image filter to
enable its combination with other novel features (e.g., caus-
tics [2], and virtual flash images [32]). Additionally, we are
also interested in using gradient content to handle outliers.
Similar to other image-space methods, ours does not lever-
age the high-dimensional information for noise reduction.
Therefore, our framework could be potentially applied to a
high-dimensional space to improve image quality. Finally,
we also plan to explore the implementation of our method in
wave rendering [41].
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