
Vis Comput (2015) 31:1001–1010
DOI 10.1007/s00371-015-1104-0

ORIGINAL ARTICLE

Visual importance-based adaptive photon tracing

Quan Zheng1,2 · Chang-Wen Zheng1

Published online: 1 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper proposes an adaptive photon trac-
ing approach based on a novel importance function, which
combines visual importance and photon path visibility. The
generation of photon path is guided by sampling this func-
tion to trace more photons to visible and more contributive
regions. As a first step, a hierarchy of visual importance maps
is constructed. Next, photon paths are produced using a new
hybrid mutation strategy, which consists of large mutation
and small mutation. The mutation parameter used in small
mutation is automatically adjusted using the adaptive Markov
chain sampling method. Meanwhile, to find a suitable ini-
tial parameter, a mutation parameter initialization method is
developed. Experiments show that, compared with previous
methods, this approach yields results with better visual qual-
ity and smaller numerical error.

Keywords Visual importance · Adaptive photon tracing ·
Photorealistic rendering · Global illumination

1 Introduction

Efficiently rendering scenes with complex lighting config-
urations is a challenging problem of global illumination.
Notable examples of such scenes are a dark room illuminated
by indirect illumination through a door slit, or a house lit by
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sunlight through windows. Most existing methods fail to effi-
ciently solve this problem. Though Monte Carlo ray tracing
methods such as path tracing (PT) [1] and bi-directional path
tracing (BDPT) [2] provide versatile solutions for solving the
rendering equation [1], they are inefficient to sample light-
carrying paths in such scenes.

Photon mapping (PM) [3] and its evolutionary versions,
progressive photon mapping (PPM) [4] and stochastic pro-
gressive photon mapping (SPPM) [5], have been widely used
for handling scenes with specular-diffuse-specular (SDS)
paths. However, these methods become highly inefficient
when rendering scenes with complex lighting settings. Due
to occlusion in these scenes, it is hard to trace photons to
visible regions, resulting in a slow convergence rate in these
regions.

Metropolis photon sampling (MPS) [6] introduces Metro
polis-Hastings sampling to photon mapping. But it traces
light paths via path tracing, which cannot efficiently sample
SDS paths. Chen et al. [7] devise an importance function
based on initial photon density, increasing photon density
in regions where initial photon density is low. Robust adap-
tive photon tracing method (RAPT) [8] gives an importance
function based on photon path visibility, which enables
the method to trace photons to visible regions. Unfortu-
nately, RAPT cannot distinguish the contribution of different
regions. It equally distributes computational efforts to all vis-
ible regions. Excessive computation in regions which are
visible but less contributive to the final image costs much
time but receives little benefit.

Motivated by these observations, we propose a visual
importance-based adaptive photon tracing approach (VIAPT)
to solve the aforementioned problems. A new importance
function based on visual importance and photon path visi-
bility is designed and it is set as the target distribution of
photon paths sampling. Due to the importance sampling on
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the importance function, photons are adaptively guided to
visible and more contributive regions, effectively acceler-
ating the convergence rate of rendering. When generating
photon paths, a hybrid mutation strategy combining large
mutation and small mutation is implemented to take advan-
tage of existing paths which arrive at highly contributive
regions. In addition, a new mutation parameter initialization
method based on tempered inter-chain adaptation is intro-
duced to find a suitable starting parameter for small mutation.
Experiments using various illumination configurations show
that VIAPT can produce images with higher quality and
lower error than existing adaptive photon tracing methods.

2 Related work

Scenes with complex lighting settings pose a tough challenge
to existing rendering methods used for solving the rendering
equations [1]. These methods can be divided into two cate-
gories: unbiased Monte Carlo ray tracing and particle tracing.

A seminal method of the first category is the metropo-
lis light transport [9], which applies Markov chain Monte
Carlo to rendering. MLT generates new paths from muta-
tions of high radiance paths using several mutation kernels.
Kelemen et al. [10] give a symmetric mutation kernel to
perform mutation in the primary sample space. But the ker-
nel parameter is set to a fixed value, which cannot adapt to
different scenes. Hoberock and Hart [11] propose to dynam-
ically update importance function based on image noise,
demonstrating that the importance function can be crafted.
Unfortunately, the above methods are inefficient to sample
SDS paths from small light sources, since SDS paths are
usually sampled with extremely low probability by path sam-
pling. In recent years, more variants have been proposed to
improve MLT, such as replica exchange Monte Carlo [12]
and gradient-domain MLT [13].

To handle scenes with SDS paths, particle tracing methods
are more widely used. PM [3] can robustly render caustics,
but its rendering result is restricted by the physical memory.
To remove the limit, PPM [4] is proposed to progressively
render consistent results using limited memory. SPPM [5]
extends PPM to handle distributed ray tracing effects such as
motion blur and depth-of-field. However, these methods are
inefficient to render scenes with complex lighting settings,
in which case it is hard to trace photons to visible regions.

To solve the above problem, MPS [6] is proposed to
deposit photons along light paths from the viewpoint to the
light source. But the light paths are sampled via path trac-
ing, which is inefficient to sample SDS paths. Chen et al.
[7] give an importance function based on the initial photon
density. But they use the mutation kernel proposed in [10],
which cannot adapt to different scenes. RAPT [8] presents
an importance function based on photon path visibility and

applies adaptive Markov chain Monte Carlo (AMCMC) to
adjust the mutation parameter. However, RAPT treats all visi-
ble regions equally. Redundant mutations in less contributive
regions do not provide additional benefits for improving the
rendering results, while incurring much computation cost.
In contrast, we design a novel importance function based
on visual importance and photon path visibility, targeting
regions which are visible and contribute highly to the final
image.

The initial mutation parameter directly affects the perfor-
mance of AMCMC, but it is manually set by users. RAPT
[8] assigns the parameter as 1. Collin et al. [14] suggest that a
smaller parameter is more appropriate. In contrast, we intro-
duce a mutation parameter initialization method based on
the tempered inter-chain adaptation (TINCA) [15], which
successively performs Metropolis sampling for a series of tar-
get distributions. In our method, we generate multiple visual
importance maps to construct a series of target distributions.

Visual importance, which measures the contribution of
light paths to the final image, has been widely used in com-
puter graphics. A comprehensive review of visual importance
is presented in [16]. Peter et al. [17] provide a three-pass par-
ticle tracing method, which introduces an extra pass to trace
importance particles (importons) and builds an importon
map. Recently, Bashford et al. [18] utilize visual importance
to improve rendering efficiency of image-based lighting.
However, they also use an extra pass to trace importons.
Vorba et al. [19] propose a method to learn the distribution of
visual importance in an online training fashion. In our work,
we construct the visual importance map in the first eye pass
of SPPM. No extra pass is required. In this way, our method
is easy to be merged with standard PPM and SPPM.

3 Overview

The core idea of VIAPT is to adaptively guide more pho-
tons to visible regions which contribute much to the final
image, aimed at accelerating the convergence rate of render-
ing. An example is shown in Fig. 1. VIAPT can adaptively

Fig. 1 Our method adaptively traces photons (small red circles) to
visible and highly contributive regions (A, B and C), where more hit
points (small green squares) are deposited. Region D is visible but less
contributive since less hit points are deposited there
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(a) (b) (c) (d)

Fig. 2 Our algorithm framework: a visual importance estimation, b mutation parameter initialization and c adaptive photon tracing. d is the eye
ray tracing pass of SPPM

trace more photons to regions A, B and C, where more hit
points are deposited. Photons arriving at these regions con-
tribute to more pixels in the final image. While region D
is visible, it is less contributive to the final image. Photons
reaching region D only contribute to one pixel. Since RAPT
treats all visible regions equally, it still traces a lot of pho-
tons to region D, causing unnecessary computation cost. In
contrast, VIAPT seeks to concentrate on tracing photons to
visible and more contributive regions.

VIAPT is built on SPPM, which includes multiple itera-
tions. Each iteration consists of a photon pass and an eye pass.
There are three main steps in VIAPT: visual importance map
construction, mutation parameter initialization and adaptive
photon tracing (Fig. 2).

In the visual importance map construction step, we esti-
mate the visual importance shot from the viewpoint to the
scene in the first eye pass of SPPM. Then a visual impor-
tance map is constructed to facilitate visual importance query.
In the mutation parameter initialization step, TINCA [15] is
employed to select a suitable initial parameter. In the adaptive
photon tracing step, photon paths are generated by perform-
ing importance sampling on the importance function. A new
hybrid mutation strategy is introduced to generate new pho-
ton paths.

4 Importance function for photon tracing

The sampling space of our importance function is a hyper-
cube space [10]. A point in the space, which is a vector of
real numbers, corresponds to a photon path. Our importance
function is defined as:

F(P) = V (P) · M(P)

s
. (1)

Here, P = v1v2 . . . vk is a photon path with k vertexes. A
photon is deposited at each vertex. V (P) is a visibility func-
tion, which is set to 1 if P splats any photons to any hit points,
and V (P) = 0 otherwise. M(P) = max{M(vi )}(1 ≤ i ≤ k)
is the visual importance of P . To accelerate visual impor-
tance estimation for M(vi ), we build a visual importance
map beforehand. s = ∫

�
F(P)d� is the normalization

kx
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Fig. 3 View importance is emitted from the viewpoint to the scene

factor. As P is sampled with a probability proportional to
F(P), the energy α of photons deposited by P should be
weighted as: α′ = α

F(P)
= s · α

V (P)·M(P)
.

4.1 Visual importance estimation

We estimate the visual importance in the eye pass of SPPM.
Eye rays are emitted from the viewpoint and traced in a way
similar to classical path tracing. Initially, all eye rays carry
the same visual importance. Then the visual importance is
accordingly updated if a scattering event occurs as an eye
ray hits a surface in the scene.

Light transport between the light source and the camera
can be formulated as a path integral, i.e. rendering equation
[1],

L =
∫

�L

f (X)dμ(X), (2)

where L is the pixel measurement, X is a light path, �L is the
path space of all light paths, dμ(X) is the differential prod-
uct area measure, and f (X) is the measurement contribution
function.

Similar to Eq. (2), visual importance emitted from the
viewpoint can be formulated as:

M =
∫

�M

g(X)dω(X). (3)

Here M is the visual importance measurement of a pixel.
X = xk, xk−1, . . . , xk−r is an eye ray with r + 1 ver-
texes, where the first vertex xk is on the camera lens and
other vertices are scattering points on the scene surfaces, as
shown in Fig. 3. �M is the space comprised of all eye rays,
dω(X) is the differential product area measure. g(X) is the
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visual importance measurement function, which measures
the visual importance arriving at a point. It can be expressed
as:

g(X) = W (xk→xk−1)

[
r−2∏

i=0

fs(xk−i−1)G(xk−i , xk−i−1)

]

×G(xk−r+1, xk−r ), (4)

where W (xk→xk−1) is the visual importance emitted from
xk to xk−1, fs(xk−i−1) is the BSDF at vertex xk−i−1,
G(xi , x j ) = V (xi , x j )

| cos θ || cos θ ′|
‖xi−x j‖2 is the geometry factor

between vertex xi and x j , and V (xi , x j ) is the visibility term.
According to Eq. (3), we estimate the visual importance

emitted from the viewpoint via tracing eye rays. If an eye
ray hits a surface, Russian roulette technique is employed
to decide whether to store a hit point on the surface. A hit
point stores the position x , the incident direction ω, the BSDF
and the visual importance M . After tracing eye rays from all
pixels, we build a KD-tree to store all hit points in the scene.

4.2 Visual importance map construction

Visual importance is required when depositing a photon. To
avoid the computation cost of estimating visual importance
at runtime, we estimate a visual importance map in advance.
For a hit point located at x , we search for its neighbor hit
points in a disk area with radius R. The visual importance at
x is:

M(x) = 1

πR2

K∑

i=1

mi . (5)

Here K is the number of hit points found in the disk. mi is
the visual importance of the i th hit point. Figure 4a shows
the visual importance map of a Dark Room scene (Fig. 8). To
eliminate local extreme values, we clamp each value between
a new range (e.g. 10–90 % of the original range). The visual
importance map effectively distinguishes less contributive
regions and more contributive regions. Note that regions near
the viewpoint have prominently larger visual importance than
the far regions. More photon paths generated by sampling our

importance function will arrive at highly contributive regions,
which is desirable.

Finally, we apply low-pass filters with different supports to
smooth Fig. 4a, constructing a hierarchy of visual importance
maps (Figs. 4b–e), which will be used in Sect. 6.

5 Adaptive photon tracing

Regular Markov chain Monte Carlo method can generate
new paths via locally perturbing an existing path using the
mutation kernel. However, it becomes highly inefficient if the
target distribution is a multimodal distribution. Its Markov
chain may get trapped around a local peak, preventing the
exploration of the entire sampling space. Furthermore, the
mutation parameter is relevant to specific scene settings.
There is no universal parameter which is suitable for all
scenes. Unsuitable parameter will lead to a slow convergence
rate of Markov chain.

To overcome these flaws, we implement photon path sam-
pling with a hybrid mutation strategy, which combines large
mutation and small mutation. In the large mutation step,
replica exchange [12] is used to obtain a visible photon path
from an assistant Uniform distribution. In the small muta-
tion step, AMCMC is employed to generate a new photon
path from a slight perturbation of the current photon path
using our mutation kernel. Meanwhile, the mutation kernel
parameter is automatically adjusted by AMCMC.

5.1 Hybrid mutation strategy

Instead of generating new photon paths totally relying on the
large mutation [8], we propose a novel hybrid mutation strat-
egy for photon path generation using both large mutation and
small mutation. Before generating a photon path, we firstly
compute the probability q to implement large mutation. Then
a random number δ is used to decide mutation strategy. If
δ < min(1, q), we implement path sampling using the Uni-
form distribution to achieve large mutation. Small mutation
strategy is used otherwise.

We define the visual importance ratio σ between the
current path Pi and the previous path Pi−1 of the target dis-

Fig. 4 The visual importance map hierarchy of the Dark Room scene. a is the original visual importance map. b–e are produced by smoothing, a
with low-pass filers. The filter support is given below each image
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tribution: σ = M(Pi )
M(Pi−1)

. Depending on the means to generate
Pi , there are two cases for computing q:

1. Pi is generated from small mutation.

– If Pi is accepted,

q =
{

0, σ ≥ 1
1 − e−σ ·n, σ < 1

, (6)

where n is the consecutive times for generating new
paths using small mutation and it is set to zero after
generating a path from large mutation;

– Otherwise, q is set to 1. Next photon path will be
generated from large mutation.

2. Pi is generated from large mutation.

– If Pi is accepted, q can be estimated using Eq. (6);
– Otherwise, Pi is replaced with a photon path gener-

ated by perturbing Pi−1, and q is estimated from case
1.

Intuitively speaking, if σ is less than 1, q keeps increasing
as n increases. This is desirable, since we prefer that the chain
visits more parts of the sampling space by performing large
mutation.

5.2 Large mutation

Our target distribution is a multimodal distribution, because
the visual importance varies a lot in different regions. To
prevent the Markov chain from being trapped around local
modes, we employ large mutation strategy to generate sam-
ples which are far from local modes.

An assistant Uniform distribution is used to generate
uniform random samples in the sampling space. Then we
utilize replica exchange Monte Carlo to implement inter-
chain exchange. The main advantage of replica exchange
Monte Carlo is to exchange samples between multiple chains
without changing the distribution of each individual Markov
chain.

We simultaneously run two Markov chains: Cu and Ct ,
where Cu corresponds to the Uniform distribution and Ct is
the Markov chain of the importance function, namely the tar-
get distribution. Since Cu can easily generate new samples
according to the Uniform distribution, we only perform uni-
directional replica exchange, replacing the current path of Ct

with a visible path of Cu , rather than mutually exchanging
paths between Cu and Ct . This process is depicted in Fig. 5.

Ct accepts a path ofCu with a probability: q(Ct ↔ Cu) =
V (Pu). It is straightforward. Given a new photon path Pu
from Cu , we replace the current path of Ct with Pu as long as

tC

uC
( ) 1uV P ( ) 1uV P ( ) 0uV P

Fig. 5 The hollow arrow shows that the target distribution (Ct ) accepts
visible path Pu from an assistance Uniform distribution (Cu). The solid
arrow shows small mutation and the dashed arrow shows large mutation

it is visible, since it is difficult to find a visible path in scenes
with complex lighting settings.

5.3 Small mutation

To locally explore the target distribution, we generate new
samples by slightly perturbing existing samples using a
mutation kernel. Depending on the principle of symmetric
random walk kernel [20], we design a novel mutation kernel:
x ′
k = xk + x̂ , which adds each dimension of a point x with

x̂ =
⎧
⎨

⎩
ξ1

( 1
e

) 1
λi , ξ2 > 0.5

−ξ1
( 1

e

) 1
λi , ξ2 < 0.5

. (7)

Here, ξ1 and ξ2 are two random numbers in the range of (0, 1).
λi is the mutation parameter of iteration i . λi directly con-
trols the mutation extent. As it approaches infinity, the kernel
degenerates to a uniform random variable, which generates
arbitrarily large mutation. On the contrary, λi = 0 results in a
constant x . The new sample x ′ is accepted with a probability

a(x → x ′) = min
(

1,
F(x ′)
F(x)

)
= min

(
1,

V (x ′)M(x ′)
V (x)M(x)

)
.

We use the controlled adaptive Marov chain Monte Carlo
method [20] to adjust λi so that the acceptance rate reaches
a target value. This process can be described as:

λi+1 = λi + (Ai − A∗) · γi (8)

Here Ai is the acceptance rate up to iteration i , which sub-
sumes information of all historical samples. The acceptance
rate is the ratio of accepted mutations to all mutations. A∗ is
the target acceptance rate. The optimum acceptance rate has
been derived to be 0.44 in one dimension, while its value is
close to 0.234 in high-dimensional space [21]. Since photon
paths are sampled in a high-dimensional hypercube space,
we use A∗ = 0.234 in the algorithm. γi is a scaling fac-
tor to control adaptation extent. To ensure that the Markov
chain converges to the target distribution, γi should satisfy
two conditions [22]:

{
limi→+∞ γi = 0∑+∞

i=1 γi→+∞ . (9)
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Similar to the idea of [23], we define γi = 1
t , where {t}

is a non-decreasing positive integer series starting from 1.
γi satisfies the conditions in Eq. (9) and approaches 0 at a
moderate rate. Eq. (8) can be rewritten as:

λi+1 = λi + (Ai − A∗)
/
t . (10)

Initially, an alternating sign for Ai − A∗ indicates that λi
is oscillating around the stationary parameter, thus we keep
increasing t to accelerate the convergence. Additionally, if
the sign of Ai − A∗ is constant and the subtraction result
is continuously approaching zero, which reveals that Ai is
approaching A∗, we also increase t . On the contrary, if the
sign of Ai − A∗ is constant and the subtraction result is far
from zero, we do not increase t to keep the adaptation extent
of γi .

5.4 Implementation details

Normalization factor estimation The normalization factor s
is estimated using s≈ 1

n

∑n
i=1 V (Pi ) · M(Pi ), where n is the

count of photon paths generated from the Uniform distribu-
tion. Since the summation term can be simplified as a sum
of the visual importance of visible paths, we progressively
estimate s by accumulating the visual importance and the
number of photon paths generated from the Uniform distri-
bution.

Algorithm The pseudocode of our adaptive photon tracing
method is shown in Algorithm 1. It is easily implemented in
the framework of SPPM.

6 Mutation parameter initialization

One critical problem regrading the adaptation process in
Eq. (10) is to select an appropriate initial mutation parame-
ter λ1. Existing methods [8,14] manually set an initial value.
However, unsuitable staring parameter will result in that the
mutation parameter ends up with a suboptimal value. We
therefore propose a mutation parameter initialization method
based on the tempered inter-chain adaptation method [15] to
perform this task.

The main idea is to generate a hierarchy of target distribu-
tions {�T }, where T comes from a “temperature” parameter
set {t0, t1, · · · , tN}. This theory requires that the difference
between two adjacent distributions is small, while the differ-
ence between �t0 and �tN is substantial. In our method, five
temperature scales from 0 to 4 are used. In Fig. 4, the origi-
nal visual importance map (Fig. 4a) corresponds to �t0 , and
other visual importance maps with increasing smoothness
correspond to distributions of increasingly higher tempera-
ture.

Algorithm 1: AdaptivePhotonTracing (initParam)
mutateSize←initParam, acceptCnt←1, mutateCnt←0,
uniformCnt←1, largeProb←1, visSum←0, t←1

P ← InitPhotonPath( );
F ← TracePhotonPath(P);
for i ← 0 to PhotonsPerPass

doLargeMut ← Random() < largeProb;
if doLargeMut then

P ′ ← UniformSamp( );
F ′ ← TracePhotonPath(P ′);
if IsVisible(P ′) then

P ← P ′; F ← F ′;
visSum ← visSum + F ;
unifromCnt ← unifromCnt + 1;

end
else doLargeMut ← false;

end
if !doLargeMut then

P ′ ← Mutate(P ,mutateSize);
F ′ ← TracePhotonPath(P ′);
mutateCnt ← mutateCnt+1;
a ← AcceptProb(F ′,F);
if Random() < a then

P ← P ′; F ← F ′;
acceptCnt ← acceptCnt+1;

end
inc ← acceptCnt

/
mutateCnt − 0.234;

if IsSignAlter(inc) or IsApproachZero(inc) then
t ← t + 1;

end
mutateSize ← mutateSize + inc/t;

end
RecordContrib(P , 1/F);
largeProb ← UpdateLargeProb( )
ScaleContrib(visSum

/
unifromCnt);

end

Algorithm 2 depicts this method. It starts adaptive photon
tracing from distribution �t4 (Fig. 4e), which corresponds
to the highest temperature. After the mutation parameter λt4
converges to a stationary value, �t3 is set as the target distri-
bution and the stationary value is used as the initial mutation
parameter of �t3 . This process continues until reaching the
lowest temperature distribution �t0 . Then λt1 is used as the
initial mutation parameter of �t0 . This is a reasonable initial
parameter, since it has undergone a series of adaptation to
learn a better value.

Algorithm 2: Mutation parameter initialization
N←4, initParam←1

for T ← tN to t1
UpdateTargetDistribution(T );
repeat

mutateParam ← AdaptivePhotonTracing(initParam)
until HasCoverged(mutateParam);
initParam ← mutateParam;

end
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Table 1 Rendering parameters used in each scene

Scene Resolution Photons per pass (K)

Dark Room 640×480 50

Cornell Slit 512×512 100

Door 512×512 200

Cornell 512×512 100

Table 2 Initial and stationary mutation parameters

Scenes Initial parameter Stationary parameter

RAPT VIAPT RAPT VIAPT

Dark Room 1.0 0.496 1.276 0.245

Cornell Slit 1.0 0.381 0.903 0.319

Door 1.0 0.213 0.418 0.117

Cornell 1.0 9.120 8.936 9.853

7 Results and discussion

Our algorithm and previous approaches are implemented on
LuxRender [24]. All results are rendered on a dual quad-core
2.4 GHz Intel Xeon E5-2609 CPU, using 8 threads. For all
scenes, the parameter α in SPPM is 0.7, the temperature scale
N equals 5, and the optimum acceptance rate is 0.234. The R
in Eq. (5) and the initial radius in SPPM are set to a 4-pixel
width. Other different parameters used in each scene are pre-
sented in Table 1. Reference images in Fig. 10 are rendered
by PPM using 24 h. Table 2 presents mutation parameters of
test scenes. VIAPT begins with a suitable mutation parameter
which is closer to the stationary value.

Experiments mainly focus on comparing VIAPT against
RAPT and SPPM using uniform random photon sampling
(URPS). Firstly, the effects of importance function and the
hybrid mutation strategy are analysed by comparing the
photon distribution. Secondly, the mutation parameter initial-
ization method and the scaling factor are analysed. Finally,
we compare VIAPT with previous rendering methods in four
test scenes.

7.1 Algorithm analysis

Photon distribution analysis Depending on the hybrid muta-
tion strategy, VIAPT efficiently samples photon paths accord-

ing to the importance function. Photon paths adaptively
guide photons to visible and more contributive regions. Fig-
ure 6 compares the photon distribution of VIAPT, URPS and
RAPT by rendering the Dark Room scenes with 1000 photon
passes. Due to the complex occlusion, the photon density of
URPS is rather low in most regions. RAPT equally raises
the photon density in all visible regions. In contrast, VIAPT
improves the overall photon density and guides more photons
to the interior floor and walls, where the visual importance
is relatively higher (see Fig. 4a).

Mutation parameter analysis The effects of our muta-
tion parameter initialization method and novel scaling factor
series are analysed by rendering the Dark Room scene using
VIAPT and RAPT (Fig. 7). The initial mutation parameter of
RAPT is 1.0, which is used in [8]. VIAPT starts with an initial
mutation parameter 0.496, which is selected by Algorithm 2.

Figure 7a shows that the mutation parameter of VIAPT has
a relatively larger variation than RAPT, because our scaling
factor series (Sect. 5.3) drops in a moderate rate rather than
decreasing monotonically. Although the mutation parameters
of both methods converge to stationary values using less than
50 passes, VIAPT ends up with a better value than RAPT.
This is validated in Fig. 7c, where the acceptance rate of
VIAPT is consistently higher than RAPT. Note that both
lines descend gradually, since the hit point radius in SPPM is
decreased after each photon pass and the area where visibility
function equals 1 is also decreased.

Figure 7b compares the acceptance rate of VIAPT and
RAPT in the first 50 photon passes. Due to a well-selected
initial mutation parameter and the scaling factor, the accep-
tance rate of VIAPT keeps oscillating around the optimum
value 0.234. On the contrary, the acceptance rate of RAPT
quickly falls after about 1 photon pass, because its scaling
factor approaches 0 quickly and it cannot adjust the mutation
parameter continuously.

7.2 Results

The Dark Room scene in Fig. 8 is a typical scene with difficult
visibility settings. Only a small proportion of visible regions
receive direct lighting from an area light in the adjacent room.
We compare rendering results of URPS, RAPT and VIAPT
in the same photon passes of 50 and 1000. VIAPT gener-

Fig. 6 Photon distributions of
URPS, RAPT and VIAPT after
1000 photon passes
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Fig. 7 Comparison of the mutation parameter (a) and acceptance rate (b) between RAPT and VIAPT in the first 50 photon passes with 50,000
photons per pass. b starts from 2.5E2 photons. (c) The acceptance rate variation trend of RAPT and VIAPT between 0 and 2000 photon passes

Fig. 8 Dark Room scene results of URPS (left), RAPT (middle) and VIAPT (right) in the same photon passes. Top row 50 photon passes. Bottom
row 1000 photon passes
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Fig. 9 RMSE of rendering the Dark Room scene using URPS, RAPT
and VIAPT. It shows that VIAPT converges faster than other methods

ates visually smoother results compared with other methods.
Note that, in pass 50, VIAPT does not show a large advan-
tage over RAPT, since VIAPT involves a mutation parameter
initialization step, which takes several passes. But VIAPT
significantly outperforms RAPT later, as it dedicates to trace
more photons to visible and more contributive regions. The
root mean square error (RMSE) of the scene (Fig. 9) shows
that VIAPT gives better results with lower numerical error
in the same photon pass.

We also use structural similarity index (SSIM, [25])
besides RMSE to measure the similarity between the tested
image and the reference image. SSIM builds on a model of
the human visual system. An index of 1 indicates that the
images are the same, whereas an index of 0 indicates that the
two images share no similarity.

Figure 10a is the Cornell Slit scene illuminated by a light
source outside the room through the door slit. We compare
all the methods in the same rendering time of 30 min. Note
that VIAPT usually performs less photon passes than RAPT,
because the acceptance rate of VIAPT is consistently higher
than RAPT and more accepted photon paths are traced in
each pass. Nevertheless, VIAPT still generates a better result
with lower RMSE and higher SSIM. Caustics on the floor
produced by PT and MLT are rather noisy. Both methods are
unable to generate the caustic on the back wall, since it is
hard for them to sample the SDS paths. In contrast, VIAPT,
URPS and RAPT robustly render the caustics on the floor
and the back wall.

Figure 10b shows the classical Door scene, which was
tested in [9]. In this difficult case, it is hard to pilot photons
to the interior room. Compared with other methods, VIAPT
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Fig. 10 The comparison of rendering the Cornell Slit scene (a) and the Door scene (b) in the same 30 min using PT, MLT, URPS, RAPT and
VIAPT

Fig. 11 The Cornell scene with a dragon and a rabbit rendered in an
hour using RAPT (left) and VIAPT (right)

generates a higher quality result which is closer to the refer-
ence image in 30 min.

Figure 11 is a Cornell scene with simple lighting settings,
where the light source can be seen from the viewpoint. We
compare VIAPT with RAPT in the same rendering time of
1 hour. Since most photon paths can arrive at visible regions
and the visual importance is uniformly distributed in the
scene. VIAPT does not provide additional benefits, obtain-
ing approximately similar results compared with RAPT, but
costs an small computation effort to build visual importance
maps and perform mutation parameter initialization.

7.3 Discussion

Although the visual importance map construction and the
mutation parameter initialization cost extra time (less than 5

photon passes), as results show, the convergence rate benefits
from improved photons distributions. The temperature scale
is 5, but other values can also be used. A small value may
not be sufficient to learn a suitable mutation parameter, mean-
while a large value requires more time for mutation parameter
initialization. The current algorithm is implemented in a mul-
tithreaded fashion with 8 threads. More threads are possible,
but the increased overhead in managing multiple threads can
also degrade performance.

Since the visual importance estimation is implemented in
the eye pass of SPPM, we can easily update visual importance
map in each eye pass, but it is not worthwhile. Given a view-
point, the visual importance distribution is fixed. Therefore,
we generate visual importance map only once in the first eye
pass, which saves the computational cost for updating visual
importance map.

Our importance function results in a dynamic target distri-
bution because the radii of hit points are gradually reduced,
causing that the regions where V (P) = 1 are also reduced.
The Markov chain convergence property with dynamic tar-
get distribution has not been fully verified. Nevertheless,
experiments have proved VIAPT to be a practical method
for rendering scenes with difficult visibility settings.

8 Conclusion and future work

This paper has presented a novel adaptive photon tracing
approach using visual importance. A new importance func-
tion based on visual importance and photon path visibility
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is proposed, and it is used as the target distribution for
photon path sampling. Furthermore, a new mutation para-
meter initialization method based on TINCA is introduced to
learn a suitable initial mutation parameter. Experiments have
demonstrated that, when handling scenes with complex light-
ing configurations, our method efficiently distributes more
photons to visible and highly contributive regions than exist-
ing adaptive photon tracing methods, while still rendering
high-quality results.

Although our method is currently implemented based on
SPPM, it can also be used for PPM. We also expect that our
novel importance function and mutation parameter initializa-
tion method can be used for other Markov chain Monte Carlo
methods and other adaptive photon tracing methods. Another
possibility for future work we are interested in is to inves-
tigate the Markov chain convergence property on dynamic
target distribution.
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