Learning to importance sample in primary sample space

University of Maryland, College Park, USA

Computer Graphics Forum, 38(2) (Eurographics 2019)

Learning to importance sample in primary sample space

University of Maryland, College Park, USA

Eurographics 2019. (Computer Graphics Forum)

Abstract

Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving (Real NVP) transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with an existing rendering technique by treating it as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.

Downloads

Acknowlegements

We thank Jay-Artist, Nacimus, NovaZeeke and B. Bitterli for constructing and distributing the Country Kitchen, White Room, Salle De Bain and Classroom scenes. This work was supported by Swiss National Science Foundation project number 169839.